Автоматизированные системы управления воздушным движением. Радиолокация, радионавигация, связь Смотреть что такое "Управление воздушным движением" в других словарях

В России идет масштабная модернизация гражданских систем управления воздушным движением. Она сопровождается активным импортозамещением. Показательно, что разработка технических средств управления мирным небом поручена тем, кто строит воздушно-космическую оборону страны.

Почему нам и дальше в управлении воздушным движением нельзя опираться только на западные технологии? Почему президентским решением проектирование новых комплексов поручено концерну Воздушно-космической обороны "Алмаз-Антей"? Насколько успешно идут работы и какие трудности приходится преодолевать? Об этом и многом другом наш разговор с Дмитрием Савицким - заместителем гендиректора по продукции для аэронавигационной системы и продукции двойного назначения.

Дмитрий Владимирович, почему было принято решение об импортозамещении во всем, что касается организации воздушного движения? Какие опасности могут заключаться в зарубежной технике от ведущих мировых фирм, которая используется практически во всех крупных аэропортах нашей планеты?

Дмитрий Савицкий: Единая система организации воздушного движения - система двойного назначения. Если будет умышленно нарушена ее работа, то остановятся полеты не только коммерческой, но и государственной авиации. В случае какой-то чрезвычайной ситуации это может стать серьезным ударом не только по экономике и безопасности полетов, но и по национальной безопасности.

Был период, когда мы сами дали возможность западным компаниям широко внедриться в наших аэропортах. Казалось, что новая Россия полностью вписалась в новый мировой порядок, в котором уже нет противостояния двух систем. Все живут в условиях рынка и этот рынок является главным регулятором всего и вся. Тем более что мы создали самые благоприятные условия для западных компаний, поставлявших технику в Россию. И транснациональные корпорации, получившие значительное увеличение своих прибылей от вхождения в нашу страну, станут самыми надежными гарантами нашей безопасности. Ведь они, как считалось, будут просто вынуждены защищать стабильность своих доходов.

Все оказалось не так прямолинейно. События на Ближнем Востоке и особенно в Югославии отрезвили очень многих. На Балканах, в Ираке, в Ливии системы управления воздушным движением отключались дистанционно компаниями-производителями очень даже легко. А санкции, которые Запад стал вводить против России, казалось бы, вопреки своим же экономическим интересам окончательно расставили все на свои места.

Системы чьих стран обеспечивали и частично обеспечивают управление воздушным движением в нашей стране?

Дмитрий Савицкий: В Москве стояла шведская система. Я бы сказал, советско-шведская. Ее запустили в 1981 году, и она отлаживалась с участием наших специалистов, которые внесли в нее немало своих дополнений. Ресурс таких систем до 15 лет. Но по причинам, которые, думаю, всем известны, в девяностые годы обновить ее не получилось, она проработала до последнего времени. Запас надежности оказался высоким. Хотя с начала 2000-х годов сбои в ней стали превышать допустимые значения. Она износилась и материально и морально.

В других регионах работали французские, итальянские и испанские системы. Сегодня осталась только одна - в укрупненном центре . Остальные заменены на системы российского производства.

Почему концерн, занимающийся разработкой боевых систем в интересах Воздушно-космической обороны России, был назначен единственным поставщиком оборудования и программного обеспечения для единой системы организации воздушного движения Российской Федерации?

Дмитрий Савицкий: Так решил президент России. И мы его решение выполняем. Наша задача не только создать технику, отвечающую мировым требованиям, но и разработать свое собственное программное обеспечение, связать системы управления гражданским воздушным движением с системами воздушно-космической обороны. Гражданская составляющая должна оптимально сопрягаться с военной.

Мы смогли спроектировать и реализовать уникальную по своим возможностям систему взаимодействия гражданских и военных аэродромов. До последнего времени она была настолько архаичной, что даже вспоминать не хочется.

Сейчас на военных аэродромах создаются специальные рабочие места операторов связи с гражданскими аэропортами с высокой степенью автоматизации. Они оборудованы самой современной компьютерной и телекоммуникационной аппаратурой, построенной на цифровых технологиях. Естественно, отечественного производства.

В октябре этого года вы ввели в эксплуатацию систему управления воздушным движением, разработанную специалистами вашего концерна. В чем ее особенности и преимущества по сравнению с той, что имелась?

Дмитрий Савицкий: Системы даже сравнивать трудно. Реализованы технологии совершенно иного уровня. Официально система была принята в эксплуатацию 10 октября. Центр управления воздушным движением находится во Внуково. Он обеспечивает контроль воздушного пространства на площади почти в миллион квадратных километров. В зону ответственности входят все крупнейшие аэропорты столицы - Внуково, Домодедово и Шереметьево.

По количеству автоматизированных рабочих мест - около 200 - наша система стала самой большой в Европе, а ее резервная система - крупнейшей в мире.

Система управления воздушным движением полностью удовлетворяет всем требованиям Международной организации гражданской авиации (ИКАО). То есть, созданная российскими специалистами и на базе российских технологий достаточно сложная система полностью отвечает требованиям, которые предъявляются к аналогичным системам во всем мире.

У наших заказчиков часто возникают претензии к исполнителям. В частности, высказывается мнение, что вот на Западе систему, подобную той, что вы запустили во Внуково сдали, и никаких вопросов - она функционирует. А у нас даже после сдачи продолжается ее отладка, ведутся какие-то доработки.

Ваши специалисты, к примеру, до сих пор работают во всех столичных аэропортах. Почему так происходит?

Дмитрий Савицкий: На Западе такая же ситуация. Когда идет ввод в строй новой и сложной системы управления, технический персонал и аппаратура должны, так сказать, притереться друг к другу. Пуско-наладочные работы могут идти достаточно долго, и присутствие специалистов-производителей в таком случае просто обязательно.

Другое дело, что на Западе давно выстроено юридическое взаимоотношение заказчика-исполнителя. Все прописывается в контракте, в том числе по пуско-наладочному периоду и гарантийному обслуживанию.

А что у нас? Почти как в кино "Бриллиантовая рука". Хочу такой же халатик, какой заказала, но пусть будет с перламутровыми пуговицами.

Был случай, когда заказчики одной из систем заявили: мы были во Франции, и нам понравилась их дисплейная индикация, сделайте такую же. Зачем? Ведь в контракте вы сами изначально прописали, что вам нужно. Нет, капризно, топают ножкой, сделайте, как у них. А это продление сроков и лишние траты. Ну не мы же в этом виноваты.

К вам, насколько известно, предъявлялись претензии, что к испытаниям была представлена "сырая" аппаратура. Так ли это?

Дмитрий Савицкий: Проблема испытаний и ввода в строй сложных систем - серьезный вопрос и давно назревшая тема для обсуждения. К сожалению, в стране практически утрачена культура испытательных и приемо-сдаточных работ. Институт инженеров-испытателей, о котором и в СССР мало кто знал, перестал существовать еще в 1990-е годы. Он действительно оказался не нужен, так как ничего нового ни в вооруженных силах, ни в гражданке в строй не вводилось. И по большому счету такой институт надо создавать заново, причем в кратчайшие сроки.

Когда-то при испытаниях техники, о которой мы говорим, главное слово было за ГосНИИ Аэронавигации. Там существовал штат инженеров-испытателей высшей квалификации. Они всегда могли очень доходчиво и, главное, технически грамотно объяснить, с одной стороны, разработчикам, что необходимо сделать по-новому или доделать, а эксплуатанту, каким образом надо работать с новой системой. Так снимались очень многие и большие противоречия между заказчиками и исполнителями уже в ходе испытательных работ.

Сегодня, увы, к испытаниям и отладке даже сложнейших систем, случается, привлекают людей низкой квалификации, не обладающих испытательским опытом. Им и кажется, что аппаратура "сырая". К тому же, сути самих испытаний заказчики зачастую просто не понимают и в контракте не прописывают.
Еще в ноябре 2015 года был получен сертификат на новую Московскую систему управления воздушным движением. Юридически имели полное право требовать от заказчика вводить ее в эксплуатацию. Но мы прекрасно понимали всю сложность того комплекса оборудования, который создали и смонтировали. Необходимо было провести эксплуатационные испытания - проверить, как диспетчеры осваивают технику, как с ней работают. Вот тут-то проблемы и начались.

Дело в том, что процедура эксплуатационных испытаний в контракте не прописывалась. И кто эти испытания должен был оплачивать? Вопрос с оплатой так до конца и не закрыт. Мы их провели за свой счет. По закону могли хлопнуть дверью и уйти, сказав: система сертифицирована, осваивайте ее сами, западные фирмачи так бы и поступили. А вот нам совесть не позволила. Все- таки речь шла о безопасности воздушного движения и безопасности нашей страны.

Зато сегодня можно утверждать - в России начала работать одна из самых надежных систем управления воздушным движением в мире. И это главное.

Досье "РГ"

Зона ответственности Московского укрупненного центра Единой системы организации воздушного движения ОрВД работает по высотам от 1500 до 12100 метров. Протяженность зоны ответственности с севера на юг - 1038 км, с запада на восток - 974 км. Московский аэроузловой диспетчерский центр контролирует территорию в радиусе 150-180 км от Москвы в нижнем воздушном пространстве. Обеспечивается управление движением воздушных судов, осуществляющих прилеты-вылеты в крупнейших аэропортах Москвы, а также управление движением воздушных судов, следующих через Московскую воздушную зону транзитом и управление судами на аэродромах государственной и экспериментальной авиации. Районный диспетчерский центр обслуживает территорию 18 областей России. Зона ответственности - от Великих Лук и Беларуси до Республики Татарстан и от границ Украины до Вологды. Московский центр обеспечивает около 60 процентов полетов воздушных судов над территорией Российской Федерации.

Управление воздушным движением (УВД) находится в компетенции государства. В США УВД осуществляется федеральным управлением гражданской авиации (ФАА) – отделением министерства транспорта. В Канаде эти функции осуществляет управление воздушного транспорта. В нашей стране УВД было возложено на органы Единой системы управления воздушным движением (ЕС УВД).

Во всех странах мира используются аналогичные методы УВД. Система УВД США имеет широкую сеть пунктов управления, обслуживающих 50 штатов и заморские территории США, такие, как Гуам, Восточное Самоа и Пуэрто-Рико. Эта сеть включает центры УВД на воздушных трассах, аэропортовые контрольно-диспетчерские пункты (КДП), центры авиадиспетчерской службы, радиолокационные станции дальнего действия и диспетчерские РЛС, радионавигационные станции и системы автоматизированного управления посадкой. Приблизительно половина сотрудников ФАА занимается вопросами УВД.

Правила полетов.

Самолет управляется в соответствии с правилами визуального полета (ПВП) или правилами полетов по приборам (ППП). Согласно ПВП, летчики, выполняя полет, обязаны следить за другими самолетами, не допуская столкновений, и не должны входить в зоны с низкой облачностью и плохой видимостью. ППП применяются летчиками, управляющими самолетом по приборам в соответствии с указаниями авиадиспетчера. Летчик может руководствоваться теми или иными правилами полета в зависимости от погодных условий, но при любых обстоятельствах он должен следить за показаниями приборов и выполнять государственные и международные авиационные правила. В целях безопасности гражданские воздушные лайнеры обычно используют ППП.

Воздушное пространство.

В США воздушное пространство делят на диспетчерское и неконтролируемое. Службы УВД осуществляют контроль в диспетчерском воздушном пространстве, в которое включают низкие и высотные воздушные трассы, диспетчерские зоны аэропортов и диспетчерские районы.

Воздушные трассы.

Воздушная трасса представляет собой коридор, границы которого отстоят на 6,5 км от осевой линии. Внутри этого коридора гарантируется безопасность полета самолета по приборам.

Диспетчерские зоны аэропортов.

Диспетчерская зона – это воздушное пространство около аэропорта, ограниченное полусферой радиусом 8 км. В диспетчерских зонах крупных аэропортов обеспечивается безопасность полета самолетов в условиях плохой видимости.

Диспетчерские районы.

Под диспетчерским районом аэропорта понимается обслуживаемая диспетчерской службой часть воздушного пространства, выходящая за пределы воздушных трасс и диспетчерских зон. Диспетчерский район позволяет отделить летчиков, работающих по ПВП, от летчиков, использующих ППП.

Средства управления воздушным движением.

Средства УВД делятся на три категории: центры УВД на воздушных трассах, аэропортовые КДП и центры авиадиспетчерской службы.

Центр УВД на воздушных трассах.

Центр УВД на воздушных трассах управляет полетом самолета от аэропорта отправления до аэропорта назначения. Такой центр осуществляет контроль воздушного движения над территорией, площадь которой может составлять 260 тыс. кв. км и более. Типичный центр УВД на воздушных трассах использует до семи РЛС дальнего действия и включает от 10 до 20 пунктов связи воздушного судна с наземными станциями. Радиус действия РЛС составляет 320 км. В часы пик в таком центре УВД может быть занято до 150 авиадиспетчеров.

Аэропортовые КДП.

Вблизи аэропорта движение самолетов управляется с КДП. КДП управляет взлетом и посадкой самолетов и осуществляет радиолокационное наблюдение за самолетами в районе основного аэропорта и запасных аэродромов. КДП обеспечивает заход на посадку и выход из зоны аэропорта самолетов, работающих по ППП, и обслуживает самолеты, использующие ПВП. КДП размещается в специальной высотной конструкции – вышке – или в куполе на крыше здания аэровокзала.

ФАА разработало и установило во всех крупных аэропортах компьютерные системы УВД. Такая система выводит на экран дисплея радара всю необходимую информацию, включая опознавание самолета, его скорость, высоту и направление движения.

Центры авиадиспетчерской службы.

Эти центры ведут свое происхождение от станций связи, которые предоставляли сведения о погоде летчикам почтовых авиалиний в 1920-х годах. В настоящее время эти центры обслуживают как гражданские, так и военные воздушные суда. Некоторые центры информируют летчиков о погодных условиях на воздушных трассах и в аэропортах, силе и направлении ветра и сообщают другие полезные сведения, позволяющие скорректировать план полета. Они могут предоставить навигационную помощь летчикам, потерявшим связь с землей. Некоторые центры авиадиспетчерской службы, как и КДП, работают круглосуточно.

Перспективы.

ФАА эксплуатирует постоянно модернизируемую сеть автоматизированных центров авиадиспетчерской службы, которые обслуживают полеты на всей территории США.

Разрабатываются усовершенствованные автоматизированные системы, использующие новейшие достижения в вычислительной технике и программном обеспечении, которые позволят выбирать безопасный маршрут полета самолета и топливосберегающие траектории движения, выявлять и устранять возможности столкновений самолетов друг с другом или с землей, соблюдать интервалы движения и транслировать всю необходимую информацию непосредственно на борт самолета.

КОМПЛЕКСНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ СТЕНД ПОЛУНАТУРНОГО ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ
ИНТЕГРИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ ВОЗДУШНЫМ ДВИЖЕНИЕМ (КИС УВД)

Предназначение

КИС УВД – это комплекс полунатурного моделирования «Комплексный исследовательский стенд управления воздушным движением», предназначенный:

    для отработки и исследования функционального взаимодействия бортовой компоненты управления полетом (пилотов и бортовой авионики) и наземной компоненты (диспетчеров УВД и планирования, а также средств автоматизации УВД) при решении задач наблюдения и самолетовождения в сложных условиях;

    для отработки перспективных функциональных возможностей борта в части наблюдения и самолетовождения, связанных с делегированием ответственности на борт;

    для оценки эффективности применения новых бортовых средств и возможностей CNS;

    для оценки перспективных концепций, методов, способов, технологий организации ВД и их компонент, а также оценок по соответствию им бортового оборудования перспективных воздушных судов (ВС).

Решаемые задачи

    Отработка перспективных бортовых приложений функции наблюдения и самолетовождения:

    • обнаружение конфликтов (Conflict Detection, CD);

      автоматическое разрешение конфликтов (Airborne Conflict Management, ACM);

      улучшенный визуальный обзор (Enhanced Visual Acquisition, EVAcq);

      ремаршрутизация (Rerouting);

      улучшенный визуальный заход на посадку (Enhanced Visual Approach, EVApp);

      ситуационная осведомленность о занятости взлётно-посадочной полосы на конечном этапе захода на посадку (Final Approach and Runway Occupancy Awareness, FAROA);

      ситуационная осведомленность об обстановке на поверхности аэропорта (Airport Surface Situational Awareness, ASSA);

      поддержка вертикального эшелонирования на маршруте (In-Trail Procedure, ITP).

    Отработка взаимодействия между бортом воздушного судна и диспетчером УВД на базе CPDLC.

    Моделирование новых способов и технологий организации очереди на прилет и управление прилетом (AMAN), организации очереди и управления вылетом (DMAN).

    Моделирование функции наземного управления движением на аэродроме (A-SMGCS).

    Отработка алгоритмов управления и планирования потоков воздушного движения (ATFM).

Основные принципы моделирования

Взаимодействие осуществляется через общий диспетчер сообщений, который, в частности, реализует функции системы единого времени (СЕВ). При этом:

    Динамические модели реализуют распределенный метод вычислений. Это позволяет осуществлять независимую логику работы различных систем. Через СЕВ процесс вычислений динамических моделей синхронизируется.

    Используется единая база данных. Таким образом, реализуется некоторое подобие поля единой информационной системы SWIM, в котором идет обмен общей информацией.

    Управление и синхронизация процессов моделирования осуществляется диспетчером сообщений как в реальном масштабе времени, так и в ускоренном.

Моделирование осуществляется в соответствии со следующей логикой:

    Все аэронавигационные данные, данные по воздушным судам, по потокам воздушного движения хранятся в библиотеках сценариев в единой базе данных.

    На этапе инициализации сеанса моделирования эта информация копируется в оперативные таблицы, и все приложения – компоненты стенда – обращаются к этим таблицам. Сигнал об инициализации передается по протоколу сетевого обмена TCP/IP.

    Во время моделирования модели и макеты оповещают друг друга об изменении своего состояния по протоколу сетевого обмена TCP/IP.

    Во время моделирования вся полетная (трековая) информация и информация о происходящих в системе событиях сохраняется в базе данных, в таблицах, специально предназначенных для протоколирования данных моделирования.

    По окончании процесса моделирования запротоколированная информация архивируется и становится доступной для постполетного анализа.

Функциональные элементы КИС УВД

АРМ управления экспериментом - подготовка к проведению исследований (подготовка сценария), проведение моделирования, обеспечение информационного взаимодействия всех подсистем, анализ результатов моделирования, формирование отчетов.

АРМ управления экспериментом является центральным элементом всего комплекса КИС УВД. ПО АРМ управления экспериментом выполняет интегрирующую функцию для всего стенда, выступая в качестве арбитра, который регулирует ход моделирования и обеспечивает информационное взаимодействие между всеми компонентами стенда.


Пользовательский интерфейс АРМ Управления экспериментом (подготовка, проведение эксперимента, анализ результатов) - ПС «Управление экспериментом».

В состав ПО АРМ управления экспериментом входит целый комплекс различных программных средств, как работающих в полностью автоматическом режиме, так и имеющих человеко-машинный интерфейс. Используя данные средства, оператор АРМ управления экспериментом способен создавать, а затем выбирать для использования в конкретном эксперименте различные варианты исходных данных, которые используются элементами стенда. Во время сеанса моделирования ПО АРМ управления экспериментом предоставляет возможность следить за его ходом и руководить им, используя данные, получаемые от прочих участников эксперимента, включая графическую информацию, выводимую на различные системы визуализации. Кроме того, в состав описываемого программного комплекса входят средства для протоколирования и обработки полученных в ходе моделирования результатов с целью их последующего анализа.

Пользовательский интерфейс АРМ Управления Экспериментом (наблюдение за ходом эксперимента) - ПС «Визуализация воздушной обстановки». На рисунке представлены данные системы наземного наблюдения, плановый маршрут выделенного рейса, положение грозовых облаков.

Пользовательский интерфейс АРМ Управления Экспериментом (наблюдение за ходом эксперимента) - ПС «3D-визуализация воздушной обстановки».

3D-визуализация воздушной обстановки. Полёт над аэродромом «Шереметьево».

Макет кабины перспективного воздушного cудна - на данный момент в стенд КИС УВД включаются три макета кабины 1) разработанный совместно ФГУП «ГосНИИАС» и ФГУП «ПИЦ»; 2) кабина МС-21, разработанный ФГУП «ГосНИИАС»; 3) кабина ФГУП «ЦАГИ».

ФГУП «ПИЦ» разработал и реализовал на демонстраторах перспективной кабины ВС ГА прототипы новых способов информационного обеспечения экипажа и управления информационным полем, системами БРЭО. Способы отображения и ввода информации унифицированы, соответствуют интуитивно понятному алгоритму деятельности экипажа на различных этапах полета.

Характерным является управление информационным полем, пилотажно-навигационным и радиоэлектронным оборудованием самолета с помощью сенсорного экрана, а также дистанционных средств управления курсором, ввода данных, применение голосового управления.

В составе КИС УВД стенд прототипирования борта предназначен для проведения моделирования полета ВС с участием пилота с целью отработки решений при использовании перспективных систем и перспективного ПО.

Предоставляет возможность задавать и корректировать план полета. Выполнять все фазы полета: движение по поверхности аэродрома, взлет, набор высоты, крейсерский полет по маршруту, снижение, посадка. Обмен пилот-диспетчер обеспечивается по каналу CPDLC и традиционной голосовой связью.

Внешний вид кабины перспективного ВС.

На данный момент реализовано подключение кабины МС-21 ФГУП «ГосНИИАС» и кабины ФГУП «ЦАГИ».

АРМ диспетчера УВД - в основе – ПО резервного комплекса УВД «МК-2000», установленного в Московском районном центре. Модернизированная версия включает перспективные функции диспетчера (CPDLC, MONA, приём запросов на самоэшелонирования, ремаршрутизацию и др.).

Пользовательский интерфейс АРМ УВД – «МК-2000».

АРМ диспетчера УВД обеспечивает выполнение всех основных функций по управлению ВД, которые выполняет настоящий диспетчер на трассе, подходе, в зоне аэродрома:

    контроль за воздушным движением, выявление опасных ситуаций;

    собственно управление полетом подконтрольных ВС (выработка и передача управляющих команд, получение рекомендаций от других участников ОрВД, обмен голосовыми или цифровыми сообщениями с бортом);

    информирование других участников УВД о воздушной обстановке в согласованном объеме.

Пользовательский интерфейс модернизированного ПО АРМ УВД.

Для функционирования макета в составе стенда в его программном обеспечении реализованы возможности по работе макета в автоматизированном режиме под контролем АРМ управления экспериментом.

В основе ПО АРМ УВД – ПО резервного комплекса УВД «МК-2000», установленного в Московском районном центре. Модернизированная версия включает перспективные функции диспетчера (CPDLC, MONA, приём запросов на самоэшелонирование, ремаршрутизацию и др.).

АРМ управления прилётом (AMAN) - имитирует работу диспетчера управления прибывающим на аэродром потоком ВС, вырабатывает регулирующие меры для их последующей реализации диспетчерами УВД.

ПО АРМ системы управления прилетом имитирует процесс планирования прилета воздушных судов на аэродром диспетчером планирования. АРМ управления прилетом на аэродром призвано обеспечить возможность исследований движения в самом «узком» месте системы ОрВД – в аэродромном пространстве и на самом аэродроме.

Моделирование работы диспетчера планирования на АРМ управления прилетом заключается в имитации выполнения всех действий при планировании прилетающего в аэропорт потока ВС: на основании актуальных плановых данных производится прогноз конфликтов для ВС (нарушения норм эшелонирования) в аэродромной зоне и при посадке на ВПП, вручную или автоматизированно вырабатываются меры регулирования для этого ВС (изменение плана полета), производится согласование предложенных мер регулирования: диспетчер АРМ управления прилетом должен согласовать предложенные меры с диспетчером системы УВД, а тот, в свою очередь – с экипажем ВС, в случае принятия предложенной меры регулирования информация о ней диспетчером системы УВД направляется в систему централизованного планирования для актуализации плана полета этого ВС.

В основном предложенная технология соответствует тем решениям, которые используются в настоящее время за рубежом. Уже несколько лет крупнейшие аэропорты (например, в Лондоне и Франкфурте) используют программные средства поддержки принятия решения при управлении прилетающим потоком ВС.

Пользовательский интерфейс АРМ Управления прилётом (ПС «Менеджер прилёта»).

Особенностью является наличие автоматической оптимизационной процедуры, позволяющей получать бесконфликтные варианты прилетающих потоков ВС в автоматическом режиме, при этом используются алгоритмы решения оптимизационной задачи, позволяющие находить решения, более близкие к глобальному оптимуму по сравнению с методами, используемыми в большинстве аналогичных зарубежных средств (например, FIFO: первый пришел – первый обслуживается).

Основными функциями ПО АРМ управления прилетом являются:

    контроль за ситуацией по прилету и выявление нарушений норм продольного эшелонирования на пороге взлетно-посадочной полосы и в аэродромном пространстве;

    автоматизированное управление прилетом воздушных судов в «ручном» режиме;

    помощь диспетчерам службы УВД по регулированию потока воздушных судов на прилет.

Проводимые исследования:

    оценка пропускной способности аэропорта;

    оценка эффективности структуры воздушного пространства и выявление путей ее совершенствования;

    оценка эффективности управления прилетом воздушных судов для различных схем управления.

АРМ управления вылетом (DMAN) - имитирует работу диспетчера управления потоком вылетающих с аэродрома ВС, вырабатывает регулирующие меры для их последующей реализации диспетчерами аэродромных диспетчерских пунктов.

ПО АРМ управления вылетом имитирует процесс планирования вылета с аэродрома воздушных судов диспетчером планирования. АРМ управления вылетом с аэродрома призвано обеспечить возможность исследований движения в самом узком месте системы ОрВД – в аэродромном пространстве и на самом аэродроме.

Моделирование работы диспетчера планирования на АРМ управления вылетом заключается в имитации выполнения всех действий при планировании вылетающего из аэропорта потока ВС – на основании актуальных плановых данных производится прогноз возможных нарушений норм эшелонирования при взлете с ВПП и в аэродромной зоне, вручную или автоматизированно вырабатываются меры регулирования (изменения плана полета), производится согласование с аэродромным диспетчером исполнительного старта, и после успешного согласования информация о мерах регулирования направляется в систему планирования для актуализации плана полета этого ВС.

В основном предложенная технология соответствует тем решениям, которые используются в настоящее время за рубежом. Уже несколько лет крупнейшие аэропорты (например, в Париже) используют программные средства поддержки принятия решения при управлении вылетающим потоком ВС.

Пользовательский интерфейс АРМ управления вылетом (ПС «Менеджер вылета»).

Особенностью реализации предлагаемого макета системы управления вылетом является наличие автоматической оптимизационной процедуры, позволяющей исследователю получать бесконфликтные варианты вылетающих потоков ВС в автоматическом режиме, при этом используются алгоритмы решения оптимизационной задачи, позволяющие находить решения, более близкие к глобальному оптимуму по сравнению с методами, используемыми в большинстве аналогичных зарубежных средств (например, FIFO: первый пришел – первый обслуживается).

Основными функциями являются:

    контроль за ситуацией по вылету и выявление нарушений норм продольного эшелонирования на пороге взлетно-посадочной полосы и в аэродромном пространстве;

    «ручное» регулирование воздушными судами;

    автоматическое управление, а именно, выработка оптимальных мер регулирования очереди потока воздушных судов;

    автоматизированное управление потоком воздушных судов;

    помощь диспетчерам службы УВД по регулированию потока воздушных судов на вылет.

Макет системы централизованного планирования (CFMU), АРМ диспетчера организации потоков ВД - имитирует работу главного центра планирования, аналогом которого могут служить ГЦ ЕС ОрВД РФ и CFMU Евроконтроля.

Программно-аппаратный комплекс, с помощью которого имитируются процессы централизованного планирования воздушного движения и их взаимодействие с другими участниками планирования и управления воздушного движения.

Пользовательский интерфейс АРМ диспетчера организации потоков ВД (ПС «Анализ загрузки»).

Назначение системы централизованного планирования (СЦП) – моделирование двух главных функций централизованного планирования:

    контроль за использованием воздушного пространства и оперативное вмешательство при выявлении проблем (регулирование потоков ВД назначением слотов вылета);

    обеспечение всех участников ВД актуальной плановой информацией.

Моделирование работы центра планирования является автоматизированным, т.е. моделируются как функции автоматически выполняемых расчетов, так и функции работы диспетчеров планирования на специально для этого предназначенном АРМ.

ПО АРМ диспетчера организации потоков ВД включает интеллектуальные средства поддержки диспетчера для контроля и принятия решения, а также средства, обеспечивающие информационное взаимодействие с другими участниками ВД.

Имитационная модель автоматизированных систем управления воздушным движением - осуществляет непосредственный контроль и управление полетом ВС в моделируемом воздушном пространстве (ВП). Эта модель имитирует соответствующие действия диспетчеров РЦ, подхода, аэродромной зоны во всей области моделируемого ВП.

Имитационная модель автоматизированных систем УВД (ИМ АС УВД) обеспечивает моделирование управляемого диспетчером полета потока воздушных судов в составе динамической модели КИС УВД.

В ИМ АС УВД моделируется функциональное взаимодействие наземной системы УВД и ВС. Модель имитирует действия системы УВД по управлению ВС в целом, обеспечивая контроль за ВС на всех этапах его движения от перрона до перрона. Не моделируется работа каждого диспетчера (или диспетчерского места) в отдельности. Основными операциями, выполняемыми в модели, являются:

    Операции при вылете ВС:

    • регулирование потока ВС на вылет (назначение взлетно-посадочных полос, маршрута вылета SID и времени вылета);

      управление диспетчера исполнительного старта;

      контроль за взлетом (прогнозирование и выявление опасных сближений);

      контроль за полетом по маршруту вылета SID (прогнозирование и выявление опасных сближений);

    Операции управления на маршруте:

    • контроль за выполнением полета ВС на маршруте (краткосрочное обнаружение опасных сближений, выявление свершившихся нарушений);

      управление диспетчером ВС при смене эшелона крейсерского полета;

    Операции при прилете ВС:

    • управление диспетчеров РЦ прилетающими ВС (назначение времени пролета точки схода с ВТ, назначение пролета круга ожидания на границе аэродромной зоны, изменение маршрута подхода к точке начала маршрута прилёта STAR, изменение STAR с сохранением или заменой ВПП);

      контроль за выполнением полета ВС по маршруту прилёта STAR;

      контроль за посадкой.

Модель движения воздушных судов - моделируется движение в воздухе, а также по поверхности аэродрома.

Модель воздушного судна (ВС) описывает выполнение полета одного конкретного ВС. Цель управляемого полёта состоит в выполнении каждым ВС из выбранного по сценарию потока предписанного суточного плана полета.

Имитируются следующие действия экипажа и бортовой системы самолетовождения и стабилизации (БССС):

    взаимодействие с диспетчерами в ходе выполнения полета;

    расчет плановой траектории полета и ее корректировка в соответствии с командами диспетчера;

    формирование команд бортовой системой самолетовождения для системы стабилизации.

Имитируется возможность появления ошибок, допускаемых экипажем.

Имитируются основные характеристики работы системы стабилизации (динамика отработки команд, ограничения на изменения угла крена, продольной и вертикальной скорости).

Имитируются погрешности самолетовождения, связанные с работой бортовой навигационной системы и поддерживающей ее наземной компоненты, а также учитывающие точность самолетовождения системой стабилизации.

Учитывается возможность отказа или сбоев в прохождении голосовых сообщений между экипажем и диспетчерами.

Результатом взаимодействия диспетчера с экипажем в процессе управляемого полета является команда на изменение условий полета, в соответствии с которой корректируется «путевая таблица», представляющая собой подробное описание программной траектории, которую должен выполнять ВС.

В режиме отладочного моделирования имитируется радиообмен между диспетчером и бортом.

Модель имитирует полет ВС по приборам. Кроме того, возможно использование бортовой системы наблюдения (как элемент всех или некоторых моделируемых ВС) для обеспечения ситуационной осведомленности экипажа и решения задач самоэшелонирования.

Модель системы наземного наблюдения - имитирует измерение, обработку и передачу в систему траекторных данных (полученных или радиолокационными средствами, или с использованием возможностей АЗН-В). Имитирует работу измерительных метеосредств.

Модель системы наземного наблюдения и системы наземных средств связи (далее – МНН) имитирует работу наземной системы наблюдения, предоставляющей информацию о местоположении ВС для системы УВД, работу системы метеонаблюдения по обеспечению системы УВД информацией об опасных метеоявлениях и работу наземных средств связи по обеспечению радиосвязи между ВС и органами УВД.

3 основные функциональные задачи МНН:

    формирование оценок текущей траекторной информации для всех моделируемых ВС;

    формирование актуальной карты облачности;

    формирование информации о расположении наземного оборудования связи.

Модель развития метеоявлений - моделирует как состояние атмосферы (величину и направление ветра), так и состояние опасных метеоявлений (грозовых облаков).

Модель развития метеоявлений предназначена для имитации динамического развития метеорологической обстановки. Во время работы ПО имитируется развитие и исчезновение грозовых облаков трех типов.

Моделируются три типа грозовых облаков: одноячейковые, многоячейковые и суперячейки. Пространственная модель одноячейкового грозового облака представляется в виде перевернутого усеченного эллиптического параболоида. Красный цветом на рисунке представлена зона высокой интенсивности, желтым – средней, зеленым - слабой.

Модель одноячейкового грозового облака.

Многоячейковое грозовое облако моделируется как суперпозиция нескольких (от 2 до 8) одноячейковых облаков. Облако типа «суперячейка» моделируется как одноячейковое грозовое облако с характерными для «суперячейки» размерами.

3D-визуализация одноячейкового грозового облака модели развития метеоявлений.

Модель эфира - имитирует прохождение всех сигналов (голосовых, цифровых сообщений) в воздухе в реальных условиях радиосвязи.

Имитационная модель эфира предназначена для моделирования прохождения радиосигнала в земной атмосфере между различными абонентами, а именно бортами и наземными станциями связи. При этом модель эфира учитывает:

    влияние характеристик физического уровня, среды распространения сигналов и помех на системные характеристики сети связи;

    непрерывные изменения координат мобильных приёмников и передатчиков для оценки мощности сигналов на входе каждого приёмника от всех передач на общем частотном канале в реальном масштабе времени для вычислений общей электромагнитной обстановки на борту каждого ВС.

Модель эфира вычисляет для каждого ВС:

    суммарную внутриканальную интерференцию от всех нежелательных источников;

    мощность полезного сигнала, его задержку, доплеровский сдвиг частоты;

    качество сигнала – отношение «сигнал / интерференция + шум».

Модель учитывает работу линий связи VDL-4 для сообщений АЗН-В и VDL-2 для сообщений, передаваемых между диспетчером и пилотом (сообщения CPDLC).

Стенд «Аэродром» - моделирует процессы, происходящие при посадке, рулении и взлете самолета. Моделируются как отдельные воздушные суда, так и системы наблюдения за поверхностью аэродрома и управления движением в аэропорту.

Стенд «Аэродром» входит в состав стенда КИС УВД и предназначен для:

    моделирования управляемого движения воздушных судов (ВС) и наземных транспортных средств (НТС) на поверхности аэродрома;

    разработки методов управления движением на поверхности аэродрома и согласования действий диспетчеров, отвечающих за различные фазы движения и полета;

    анализа проблем взаимодействия диспетчеров и пилотов;

    разработки бортовых приложений функций наблюдения и навигации для повышения ситуационной осведомленности пилота.

Стенд включает в себя две основные компоненты:

    цифровая модель аэродрома;

Под цифровой моделью аэродрома понимается совокупность данных, описывающих структуры и характеристики собственно аэродрома, а также его оборудования и средств, в частности:

    высокоточные картографические данные;

    данные по состоянию, правилам использования, регламентам работы, нормам эшелонирования;

    данные по ВС и НТС.

    динамическая имитационная модель управляемого движения транспортных средств на аэродроме.

Динамическая имитационная модель управляемого движения включает в себя:

    модели движения ВС и НТС;

    модель системы наблюдения аэродрома;

    АРМ управления наземным движением;

    модель системы видеонаблюдения;

    система трёхмерного отображения «виртуальная башня».

АРМ управления наземным движением - пользовательский интерфейс.

АРМ управления наземным движением является макетом усовершенствованной системы управления наземным движением и контроля за ним (A-SMGCS). АРМ может работать полностью в автоматическом, в полуавтоматическом и в полностью ручном режимах. В задачи АРМ входят такие функции как:

    отображение карты-схемы моделируемого аэродрома, транспортных средств на его поверхности и в зоне аэродрома;

    назначение оптимальных маршрутов движения ВС и НТС;

    определение и разрешение потенциальных конфликтных ситуаций на поверхности.

Модели движения ВС и НТС отвечают за имитацию движения транспортных средств по поверхности аэродрома, а модель наблюдения имитирует видимость воздушных судов в зоне аэродрома и на его поверхности средствами наблюдения аэродрома. Её дополняет модель видеонаблюдения, имитирующая наблюдение за ВПП и прилегающей к ней территории посредством телекамер и определение движущихся объектов в указанной области.

Система трёхмерного отображения «виртуальная башня» представляет собой систему визуализации, состоящую из двух частей:

    «реальный» вид, с учётом метеоусловий;

    синтетический вид (данные от моделей наблюдения и видеонаблюдения).

Модель системы видеонаблюдения аэродрома

Модель системы видеонаблюдения аэродрома предназначена для повышения ситуационной осведомленности экипажа и диспетчерских служб о движении самолетов и наземных транспортных средств на территории летного поля. Основной задачей модели является анализ видеопотока с камер наружного наблюдения территории аэродрома на предмет обнаружения всех движущихся самолетов и транспортных средств, в том числе не оборудованных датчиками АЗН-В.

Модель получает данные от синтетических или реальных видео и тепловизионных датчиков, которые обрабатываются на сервере видеонаблюдения. Основными функциями сервера видеонаблюдения являются:

    обнаружение и непрерывное многокамерное слежение за всеми движущимися объектами на территории аэродрома;

    обнаружение появившихся или исчезнувших объектов на территории летного поля;

    комплексирование информации от синтезированных векторов состояний, получаемых из различных источников, например, от датчиков АЗН-В, с данными алгоритмов видеоаналитики.

Видеопоток с маркированными обнаруженными самолетами и транспортными средствами передается на АРМ оператора видеонаблюдения, а комплексированные вектора состояний обнаруженных объектов в режиме реального времени передаются на АРМ управления экспериментом, который пересылает их в макет кабины перспективного воздушного судна, в модель системы наземного наблюдения и другие функциональные элементы КИС УВД.

Пользовательский интерфейс АРМ Оператора видеонаблюдения аэропорта.

Основные сведения

Управление воздушным движением находится в компетенции государства. В России функции УВД возложены на органы Единой системы управления воздушным движением (ЕС УВД).

В последние годы часто используется термин Организация воздушного движения и аббревиатуры ОВД, ОрВД, ЕС ОрВД . В англоязычных источниках используется термин Air Traffic Control (ATC ) или Air Traffic Management (ATM ).

ЕС УВД включает широкую сеть пунктов управления: районные центры (РЦ) УВД на воздушных трассах, аэропортовые контрольно-диспетчерские пункты (КДП), местные диспетчерские пункты (МДП) и т. д.

При следовании воздушных судов по авиалиниям применяется эшелонирование .

Система управления воздушным движением - автоматизированный сервис, обеспечиваемый наземными службами для управления воздушным движением (см. авиадиспетчер).

Задача системы состоит в таком проведении воздушных судов через зону своей ответственности, чтобы исключить их опасное сближение по горизонтали и вертикали. Вторичная задача заключается в регулировании потока воздушных судов и доведении необходимой информации экипажам, в том числе погодных сводок и навигационных параметров.

Во многих странах СУВД регулируют воздушные суда всех классов - частные, гражданские и военные. В зависимости от каждого конкретного полёта и типа судна СУВД может давать различные инструкции, обязательные к выполнению экипажем этого судна, либо просто предоставлять необходимую полётную информацию (в том числе рекомендательного характера). В любом случае экипаж несёт ответственность за безопасность своего полёта и может отклоняться от полученных инструкций в чрезвычайных ситуациях .

Комплекс управления воздушным движением - совокупность служб, сооружений и технических средств на территории аэродрома , предназначенная для непосредственного обеспечения взлёта , посадки и руления воздушных судов (самолётов , вертолётов и планеров).

1. Служба организации воздушного движения (ОрВД). Рабочие места персонала (диспетчеров управления воздушным движением), оснащённые тем или иным оборудованием (от бинокля и радиостанции до автоматизированных рабочих мест на базе быстродействующих вычислительных комплексов), находятся в здании командно-диспетчерского пункта (КДП), который обычно расположен вблизи перрона в точке с хорошим обзором всего лётного поля, взлётно-посадочных полос, рулёжных дорожек и мест стоянок, а на ряде аэродромов - дополнительно в зданиях стартовых диспетчерских пунктов (СДП), расположенных вблизи торцов ВПП.

2. Служба электрорадиотехнического обеспечения полётов - радиотехнические комплексы, позволяющие экипажам воздушных судов вести связь с землёй, определять своё местонахождения в той или иной системе координат и выдерживать заданные траектории маневрирования в районе данного аэродрома, а также заход на посадку, посадку, взлёт и выход из района аэродрома. Обычно включает в себя:

  • радиостанции различных мощностей и диапазонов;
  • радиолокационные станции;
  • наземные компоненты навигационных систем;
  • радиооборудование для захода на посадку.

3. Служба электросветотехнического обеспечения полётов: световое оборудование ВПП и рулёжных дорожек.

4. Метеорологическая служба. Оборудование для наблюдения за фактической погодой на аэродроме с последующей передачей этих данных (посредством радиовещательных передач АТИС , ВОЛМЕТ и по другим радиоканалам) экипажам воздушных судов , производящих взлёт или посадку на аэродроме, и авиадиспетчерам. На небольших аэродромах метеорологическое оборудование (датчики для измерения параметров ветра, горизонтальной видимости, облачности, температуры и влажности воздуха, атмосферного давления и т. д.) располагаются на метеоплощадке вблизи КДП , а на крупных аэродромах - в нескольких точках лётного поля (у торцов ВПП , вблизи середины ВПП и т. п.).

5. Штурманская служба.

6. Служба аэронавигационной информации.

Важной составляющей информационного обеспечения комплекса управления воздушным движением является Сеть авиационной фиксированной электросвязи (АФТН).

См. также

Ссылки

  • Московский центр автоматизированного управления воздушным движением
  • Государственная корпорация по организации воздушного движения в Российской Федерации
  • Федеральные авиационные правила полетов в воздушном пространстве РФ
  • Вышка управления воздушным движением Международного аэропорта Домодедово
  • ПРИКАЗ РОСАЭРОНАВИГАЦИИ ОТ 26.10.2007 N 105 ОБ УТВЕРЖДЕНИИ ПЕРЕЧНЯ ЗОН, РАЙОНОВ И СЕКТОРОВ УПРАВЛЕНИЯ ВОЗДУШНЫМ ДВИЖЕНИЕМ

Wikimedia Foundation . 2010 .

Смотреть что такое "Управление воздушным движением" в других словарях:

    - (УВД) в нашей стране организация, планирование, координирование движения воздушных судов, выполняющих полёты или движущихся по аэродрому в связи с совершением взлётно посадочных операций. Конечная цель УВД обеспечение безопасности, регулярности и … Энциклопедия техники

    управление воздушным движением Энциклопедия «Авиация»

    управление воздушным движением - (УВД) в нашей стране — организация, планирование, координирование движения воздушных судов, выполняющих полёты или движущихся по аэродрому в связи с совершением взлётно посадочных операций. Конечная цель УВД — обеспечение безопасности,… … Энциклопедия «Авиация»

    - (УВД) комплекс мероприятий по контролю и управлению движением ЛА в воз д. пространстве в целях обеспечения безопасности и регулярности полётов. УВД в р не аэродромов и на возд. трассах осуществляется сетью наземных диспетчерских пунктов на основе … Большой энциклопедический политехнический словарь

    наземное управление воздушным движением - antžeminis skrydžių valdymas statusas T sritis radioelektronika atitikmenys: angl. airport traffic control vok. Bodenflugsteuerung, f rus. наземное управление воздушным движением, n pranc. contrôle du trafic aérien de sol, m … Radioelektronikos terminų žodynas

    Система и процесс, обеспечивающие порядок и безопасность полетов в диспетчерском воздушном пространстве и обмен информацией между авиадиспетчерами и экипажами воздушных судов с использованием ЭВМ и радионавигационных средств. Управление воздушным … Энциклопедия Кольера

    ГОСТ Р 51504-99: Системы управления воздушным движением и ближней навигации. Сигналы TУ - TC, передаваемые между КПД и средствами УВД и ближней навигации. Состав и основные параметры - Терминология ГОСТ Р 51504 99: Системы управления воздушным движением и ближней навигации. Сигналы TУ TC, передаваемые между КПД и средствами УВД и ближней навигации. Состав и основные параметры оригинал документа: 2.4 диспетчерский комплект ТУ ТС … Словарь-справочник терминов нормативно-технической документации

    В России управление воздушным транспортом находится под контролем государства. Имеются управления по контролю за воздушным транспортом и линейные отделы на авиалиниях в России. Каждая авиакомпания платит налог на диспетчерское обслуживание.… … Википедия

    - (ФАА, Federal Aviation Administration, FAA) агентство Министерства транспорта США, управляющее всеми аспектами гражданской авиации согласно Федеральному акту об авиации от 1958 … Википедия

    Произошёл 15 октября 2009 года в американском городе Форт Коллинз, штат Колорадо, когда Ричард и Маюми Хин выпустили шарльер, наполненный гелием, в атмосферу, а потом утверждали, что на шаре находится их шестилетний сын Фэлкон. В это время СМИ… … Википедия

В соответствии с целью - обеспечение максимально возможного уровня безопасности полетов при удовлетворении потребностей пользователей воздушного пространства Российской Федерации с учетом увеличения объемов перевозок в зоне ответственности филиала, на предприятии осуществляется непрерывное техническое и технологическое развитие.

В 2014 г. введена в строй в полнофункциональном режиме РК «Москва-Резерв». В ее состав вошли КСА УВД «Альфа-3», КСА ПВД «Планета-5», СКРС «Мегафон», СТВ «Метроном», КСЗИ «Сфера». Задачей РК «Москва-Резерв» было обеспечение бесперебойного функционирования радиоэлектронных средств организации воздушного движения (ОВД) на финальном этапе эксплуатации основной АС УВД «ТЕРКАС». В настоящее время РК «Москва-Резерв» может выполнять функции резервного комплекса, как для АС УВД «ТЕРКАС», так и для новой АС ОрВД «Синтез-АР4». При этом все процессы связанные с обработкой и отображением радиолокационной и плановой информации синхронизируются с той системой, которая в данный момент выполняет функции основной.

10 октября 2017 года процесс организации воздушного движения был переведен на новую АС ОрВД «Синтез-АР4», генеральным подрядчиком по поставке которой является АО «Концерн ВКО «Алмаз-Антей». Новая АС ОрВД является крупнейшей в России и одной из самых крупных в мире, поскольку предназначена для Московской зоны ЕС ОрВД – самой сложной и насыщенной по количеству аэродромов, видов полетов, интенсивности воздушного движения. Зона ответственности филиала «МЦ АУВД» - около 100 воздушных трасс протяженностью 26 000 км, имеющих 150 точек пересечения, площадь более 700 000 кв. км., на которой расположено более 100 аэродромов, в том числе 10 международных. Более 60 % всех полетов, выполняемых в Российской Федерации (более 2500 рейсов в день), выполняется под управлением диспетчеров филиала. В зоне ответственности филиала одновременно находится более 300 ВС различного типа.

В таких напряженных для диспетчерского состава условиях новая система АС ОрВД «Синтез-АР4» полностью обеспечивает диспетчерский персонал всей необходимой информацией для целей управления воздушным движением. При этом уровень автоматизации системы позволяет диспетчеру не отвлекаться на рутинные операции, которые за него, в автоматизированном режиме выполняет система, а принимать решения на основе прогнозов о возможном возникновении потенциально опасных ситуациях и расчетов траекторий движений воздушных судов. Уже сейчас в АС ОрВД «Синтез-АР4» внедрены такие современные технологии как OLDI, Safety Nets, MONA, AMAN/DMAN, CPDLC, TIS-B, взаимодействие с AODB аэропортов. Идет внедрение авиационной цифровой связи в режимах FANS-1/A ACARS и VDL Mode2.

В составе АС ОрВД Московского центра находится более 400 автоматизированных диспетчерских рабочих мест (АРМ) диспетчеров ОВД и выносных АРМ, более 200 АРМ в аэропортах МУДР, более 200 АРМ диспетчеров РК «Москва-Резерв».

С более чем 300 рабочих мест диспетчеры ведут радиосвязь с экипажами ВС. Все АРМ выполненных на базе специализированных компьютеров промышленного исполнения, предназначенных для работы в режиме 24 часа/7дней в неделю. Компьютеры имеют дублированные сетевые интерфейсы, что обеспечивает необходимый уровень отказоустойчивости. Все рабочие места оснащены современными средствами отображения, основным из которых является 4K-дисплей производства компании «WIDE Сorp», разработанный специально для целей управления воздушным движением», разработанный специально для целей управления воздушным движением.

Новая система АС ОрВД создана на базе современного оборудования таких лидеров в области информационных технологий как CISCO, Alcatel, Hewlett-Packard, Dell, Intel. В АС ОрВД установлено и работает более 5500 различных аппаратных блоков и устройств, а групповое оборудование расположено более чем в 50 монтажных шкафах. На данный момент АС ОрВД «Синтез-АР4» связан более чем с 50 различными автоматизированными системами. Для этого используется около 600 внешних каналов связи. В систему поступает радиолокационная информация от 23 радиолокационных комплексов и 19 АЗН станций. Такое количество источников информации АЗН и РЛИ обеспечивает многократное радиолокационное перекрытие Московской воздушной зоны.

Передача данных осуществляется в соответствии со спецификациями организации Eurocontrol, в специализированных протоколах. При этом все каналы передачи данных являются дублированным, что обеспечивает бесперебойный режим ее поступления. Основные процессы обработки, отображения, анализа и прогнозирования радиолокационной информации производятся при четырехкратном аппаратном резервировании. Для обеспечения высокой пропускной способности, сетевые соединения серверного оборудования выполнены на основе оптоволокна в дублированной ЛВС. В составе комплекса приема и обработки информации РЛИ и АЗН работает 8 серверов. В АС ОрВД обрабатывается и отображается на экранах АРМ диспетчеров огромное количество метеоинформации, поступающей из аэропортов и от 12 метеолокаторов. Для хранения, и последующего анализа всего объема информации, в серверах комплекса документирования используются дисковые массивы, а для хранения информации и оперативного доступа к информации РЛИ используются системы хранения данных, имеющие оптические интерфейсы связи, работающие по технологии Fiber Channel. Все серверное оборудование выполняет свои функции при двукратном резервировании, а в составе комплекса документирования работает 24 сервера.

В состав АС ОрВД входит комплекс средств автоматизации планирования использования воздушного пространства (КСА ПИВП), обеспечивающий стратегическое, предтактическое и тактическое планирование использования воздушного пространства и организацию потоков воздушного движения с объемом более 3000 планов в сутки, обрабатывая по 15000 входящих сообщений ежедневно. КСА ПИВП обеспечивает информационное взаимодействие по планово-диспетчерской, аэронавигационной и справочной информации с 14 группами организации планирования на аэродромах (ГО ПВД) и 20 командными пунктами аэродромов государственной и экспериментальной авиации.

Принимая во внимание количество рабочих мест, обилие подсистем, а так же уровень автоматизации АС ОрВД, требования к инженерному персоналу всегда были очень высокие. Обучение инженерно-технического персонала по эксплуатации АС ОрВД и дополнительные специализированные курсы проводились еще в период комплексных испытаний системы. Одним из приоритетов эксплуатации АС ОрВД у инженерно-технического персонала было и всегда будет взаимодействие со специалистами предприятий-разработчиков в целях улучшения качественных характеристик системы и внедрения новых технологий, продолжения совершенствования навыков эксплуатации и расширения знаний в области IT-технологий. Также современные комплексы средств автоматизации управления воздушным движением (КСА УВД) введены в строй в Калужском, Воронежском, Белгородском, Нижегородском ЦОВД.

В 2018 году на аэродроме Нижнем Новгород введен в эксплуатацию новый АКДП. Идет строительство нового АКДП на аэродроме Липецк. Планируется строительство АКДП на аэродроме Домодедово. Вводятся в эксплуатацию современные средства радионавигации, радиолокации и связи. Автоматизированные приемо-передающие центры ОВЧ (АППЦ) TRS-2000 в филиале «МЦ АУВД» являются основными средствами приема-передачи речевой информации между диспетчерами УВД и экипажами ВС. Совмещенные автоматизированные приемо-передающие центры - принципиально новое направление в развитии подсистем радиосвязи для управления воздушным движением. Они позволяют размещать передатчики и приемники в одном помещении (контейнере), устанавливать антенны на небольшой площади и обеспечивать необходимые условия для обеспечения электромагнитной совместимости. При этом уменьшаются затраты на прокладку линий связи, снижаются затраты на аренду земли, содержание зданий и сооружений, уменьшается количество вспомогательного оборудования.

Радиооборудование «Серия 2000» составляет основу АППЦ и является новым поколением многоканальных цифровых радиосредств ОВЧ и ОВЧ/УВЧ диапазонов и предназначено для применения в системах УВД гражданской и государственной авиации, обеспечения фиксированных каналов радиосвязи между диспетчерами и экипажами воздушных судов. В «Серии 2000» применен модульный принцип построения радиосредств, позволяющий обеспечить радиосвязью как небольшие аэропорты, так и укрупненные многоканальные радиоцентры. В настоящее время для обеспечения каналами радиосвязи дополнительных секторов МАДЦ и РДЦ под новую структуру воздушного пространства (НСВП) проводятся работы по дооснащению АППЦ Шереметьево, АППЦ Чулково, ААППЦ Внуково, АПРЦ Постниково и АПМРЦ Филимонки, планируется строительство АППЦ Курск. Проводятся проектные и изыскательские работы по строительству 48-и канального АПМРЦ на объекте ПМРЦ «Филимонки».

В филиале эксплуатируются такие современные средства радионавигации как РМП-200, DVOR2000/DME2700, DF2000, ILS 2700, DME 2700, АРМ-150 МА. Постоянно модернизируется радиолокационное оборудование. На эксплуатацию поступают аэродромные радиолокационные комплексы «Лира-А10» и МВРЛ «Аврора-2» режима «Mode S» с функцией расширенного наблюдения в режиме АЗН-В 1090 ES. Введены в строй современные АРЛК «Лира-А10» в Воронежском, Белгородском, Домодедовском ЦОВД. Планируется установка АРЛК «Лира-А10» в Калужском, Шереметьевском и Нижегородском ЦОВД.

Эксплуатация МВРЛ «Аврора-2» на РЛП «Дзержинск», РЛП «Таловая» и РЛП «Зименки» дала возможность получать с борта воздушного судна (ВС) и отображать на экране автоматизированного рабочего места (АРМ) диспетчера значительное количество дополнительных данных. Высота полета ВС, установленная экипажем, угол крена, угловая скорость, путевая скорость, вертикальная скорость, приборная скорость, установленное давление, магнитный курс и много другой информации, поступающей с борта ВС значительно облегчает работу диспетчера УВД. Кроме того адресный режим работы МВРЛ «Аврора-2», использование уникальных идентификаторов ВС и селективные запросы исключают искажение вторичной информации от ВС, находящихся на одном азимуте и удалении от радиолокатора.

Продолжаются работы по внедрению и использованию технологий глобальной спутниковой радионавигационной системы. В 2016 году завершена работа по перекрытию всего воздушного пространства Московской зоны ЕС ОрВД 4-х канальными станциями автоматического зависимого наблюдения АЗН-В 1090 ES НС-1, предназначенными для наблюдения за находящимися в зоне видимости станции ВС, оснащенными оборудованием АЗН-В и передачи данных наблюдения в комплексы средств автоматизации управления воздушным движением. В 2017 году во всех ЦОВД филиала были введены в эксплуатацию станции ЛККС А-2000 (GBAS), являющиеся наземной частью системы спутниковой навигации (GLS).

Основная цель их установки – сделать еще более точным определение местоположения ВС в пространстве и избежать ошибок при всех возможных внешних воздействиях на сигнал со спутников, который принимает ВС, в том числе и во время захода на посадку. Принцип действия GLS простой: местоположение ВС определяется по спутникам, а погрешность корректируется наземной станцией ЛККС. Уже сегодня ВС, оборудованные GLS, могут заходить на посадку при метеоусловиях, соответствующих категории 1 ИКАО.

Еще одной составляющей глобальной спутниковой радионавигационной системы. является МПСН. Аэродромная многопозиционная система наблюдения (АМПСН), основанная на мультилатерационных технологиях АЗН-В в аэропорту Домодедово уже эксплуатируется, а в 2018-2019 годах планируется завершить работы по внедрению аэродромных многопозиционных систем наблюдения на аэродромах Внуково и Шереметьево. Кроме того в стадии реализации находится проект по установке технических средств мониторинга системы контроля за выдерживанием высоты ВС (HMU).

В филиале широко применяются цифровые телекоммуникационные сети. Цифровая сеть телекоммуникаций филиала «МЦ АУВД» ФГУП «Госкорпорация по ОрВД» представляет собой мультисервисную сеть передачи данных, построенную на использовании (аренде) каналов у операторов связи и волоконно-оптических линий с применением технологии многопротокольной коммутации меток (Multiprotocol label switching - MPLS). Данная технология на сегодняшний день является самой эффективной технологией передачи Ethernet и IP-трафика. Центральное транспортное ядро сети IP/MPLS построено на базе маршрутизаторов операторского уровня, подключенных по кольцевой топологии.

Высокое качество и надежность услуг на базе сети IP/MPLS обеспечивается за счет использования механизмов интеллектуального управления трафиком (Traffic Engineering) и быстрой перемаршрутизации (Fast Reroute). Это позволяет в автоматическом режиме мгновенно переключать потоки данных на резервные направления при авариях на физических средах и выходе из строя сетевого оборудования, а также в случае существенного повышения загрузки основных маршрутов. Автоматизация процесса обеспечивается протоколами маршрутизации и сигнализации MPLS.

Мультисервисная сеть IP/MPLS является основой для организации частных виртуальных каналов (EVLL) и мультисервисных корпоративных сетей (L2/L3 VPN) с поддержкой качества обслуживания для передачи различных видов трафика: голоса, видео и данных. Для обеспечения требуемого качества услуг на сети IP/MPLS применяются несколько классов обслуживания трафика в зависимости от требований к передаче информации.

На сегодняшний день специалисты филиала «МЦ АУВД» обслуживают единую сеть наземной связи и передачи данных в Московской воздушной зоне и московском зональном центре ЕС ОрВД России, которая насчитывает свыше 450 активных устройств. В этот список включаются коммутаторы, маршрутизаторы, мультиплексоры, АТС, HDSL-модемы. Управление и наблюдение за оборудованием сети происходит с использованием централизованной системы управления расположенной на площадях филиала.