Контроллер заряда солнечной батареи. Контроллер заряда аккумулятора от солнечной батареи: зачем нужен и как работает Контроллеры заряда аккумуляторов от солнечных батарей своими руками

— вниманию читателей предлагается контроллер заряда фотоэлектрических систем при токе заряда до 8А и напряжении аккумуляторов 12 В. Контроллер оптимизирует процесс заряда, не допуская перезаряда аккумуляторов в широком диапазоне освещенности и температуры панели.

Контроллер заряда солнечной батареи содержит доступные компоненты общей стоимостью менее 3 долларов (менее 200 рублей). Несколько устройств в течение 6 месяцев эксплуатируются с панелями, имеющими максимальную мощность от 40 до 100 ватт.

Вступление

Несмотря на привлекательность идеи солнечной энергетики, ее реальное внедрение в энергоснабжение сельских и дачных домов условно рентабельно только на широтах Краснодарского края и южнее. Тем не менее, энтузиасты приобретают солнечные панели с максимальной мощностью от 40 до 100 ватт и пробуют использовать системы на их основе в качестве резервного источника питания для аварийного освещения и компьютерной техники. Как правило, эти люди обладают руками, растущими из правильного места, и знают практическую электронику. Вот именно для их подготовлена эта статья.

Описание схемы устройства

Существует закономерность, что для эффективного выбора мощности модуль контроллера обязан следить за точкой предельной мощности солнечной панели, то есть точку, в которой и напряжение и ток, отдаваемые панелью, максимальны. Универсальные промышленные контроллеры, отслеживающие положение рабочей точки и рассчитанные на широкий диапазон мощностей солнечных панелей, собранных в батареи, достаточно дороги и избыточны в случае эксплуатации одиночной панели.
Точка максимальной мощности и температурный диапазон эксплуатации указываются в паспортных данных качественных панелей.

При проектировании предлагаемого контроллера реализованы обе основных задачи эксплуатации — непрерывное поддержание батареи в точке максимальной мощности и температурная коррекция положения рабочей точки. Контроллер заряда солнечной батареи , а вернее блок-схема представлена на Рисунке 1 и содержит эквивалент солнечной батареи в виде источника тока SB, обладающего внутренним сопротивлением R BH .

При отсутствии внешнего освещения R BH стремится к бесконечности, а ток к нулю. При росте освещенности R BH стремится нулю, а ток к максимальному, технически допустимому значению. Рассмотрим работу схемы. В исходном состоянии (при отсутствии освещения) конденсатор С1 разряжен, на выходе компаратора U1 присутствует «1», ключ S1 разомкнут. U oп равно паспортному значению точки максимальной мощности солнечной панели.

При росте освещенности емкость С1 будет получать заряд через внутреннее сопротивление солнечной панели. Когда напряжение на С1 превышает опорное напряжение, в выходной цепи компаратора появляется «О», замыкающий ключ S1. Емкость С1 сбрасывает заряд через S1 на нагрузку R H , а далее процесс повторяется. Чем выше освещённость, тем чаще происходит повторение описанного выше процесса.

По сути, мы имеем релаксационный генератор — преобразователь освещенности в частоту.
В практической схеме частота следования импульсов тока составляет единицы герц на рассвете и в сумерки, до десятков килогерц при максимальной освещенности, что обеспечивает широкий динамический диапазон работоспособности контроллера.

Принципиальная схема: контроллер заряда солнечной батареи, представлена на Рисунке 2.

Поскольку ранее мы подробно разобрали алгоритм работы контроллера, то остановимся только на нескольких моментах.

  1. Схема гарантированно работоспособна с 12-вольтовыми солнечными панелями мощностью от 40 Вт до 100 Вт, имеющими напряжение холостого хода не более 22 В, номинальное напряжение, соответствующее точке максимальной мощности 17-18 В и номинальный ток2…8А.
  2. Компаратор U1-2 срабатывает при напряжении на аккумуляторной батарее выше 14.4 вольт, принудительно ограничивая длительность импульсов зарядного тока, что предотвращает перезаряд аккумулятора.
  3. Питание компаратора и источника опорного напряжения производится с выхода устройства, что гарантирует автоматическое отключение контроллера заряда солнечной батареи при отключении аккумулятора.

Настройка схемы

Перед началом настройки временно разорвите цепь выхода компаратора U1 -2. Вместо термистора подключите сопротивление 8.2 кОм, примерно равное сопротивлению 10-килоомного термистора при температуре 25 градусов Цельсия. Если вы не планируете использовать термокомпенсацию точки максимальной мощности, или расстояние от панели до контроллера больше 2 метров, резисторы R15, R17 и термистор R16 могут быть удалены без ущерба для работоспособности схемы. При этом резистор R4 подключается к плюсовой шине.

Операции настойки выполняются в следующей последовательности:

    1. Подключите к выходу контроллера заряженную примерно на 50-60% аккумуляторную батарею небольшой мощности, например 7 Ач от источника бесперебойного питания. Как правило, такие аккумуляторы есть в арсенале мастера.
    2. Проверьте наличие опорного напряжения 8 В.
    3. Подключите к входу контроллера регулируемый источник 10-24 В с током до 2 А через сопротивление 5 Ом, имитируя подключение солнечной батареи.
    4. Медленно поднимая напряжение, контролируйте состояние выходной части компаратора U1-1. Если при напряжении, равном номинальному напряжению панели, для примера 17.2 В, с которой будет использоваться контроллер заряда солнечной батареи , на выходе U1-1 все еще будет высокий потенциал, регулируем R5 до возникновения автоколебаний.
    5. Далее контролируя напряжение на конденсаторе С1 и увеличивая входное напряжение, убеждаемся, что напряжение на конденсаторе С1 остается неизменным и равным номинальному напряжению солнечной панели. При помощи осциллографа убедитесь, что форма сигнала на стоке G3 близка к показанной на Рисунке 3.
  1. Напряжение на аккумуляторе начнет расти. Когда оно достигнет 14.5 В, прекратите настройку, отключите аккумулятор и источник питания. Восстановите соединение выхода компаратора U1-2 с элементами схемы.
  2. Подключите аккумулятор и источник питания. Если форма импульсов изменилась, и ток заряда резко упал, регулируйте R10 до тех пор, пока изменение ограничения зарядного тока не будет наступать при напряжении на заряжаемом аккумуляторе 14.4 В.На этом настройка может считаться законченной.

Конструктивные особенности

При пиковом значении тока более 3 А для транзистора Q3 необходим теплоотвод. Разумеется, полевой МОП-транзистор не утратит работоспособность без заметного ухудшения параметров при температурных значениях в пределах 100 градусов, но в случае желания иметь уверенно работающий прибор, радиатор необходим.

В качестве дросселя L1 использован дроссель режекторного фильтра от блока питания компьютера. Обмотки дросселя соединены последовательно. При токах более 5 А дроссель может нагреваться до 60 градусов, но это не влияет на надежность устройства.

К вопросу о линеаризации характеристики термистора

В процессе разработки схемы контроллера были исследованы различные варианты управления положением рабочей точкой контроллера при помощи измерения температуры панели. В одной из моделей использовалась более сложная схема термокомпенсации, основанная на суммирующем ОУ для сложения опорного напряжения с выходным напряжением температурного датчика на термисторе. Это решение не применяется в описываемом контроллере, но автор считает полезным упомянуть его в рамках данной статьи.

Наилучшая линеаризация выходного сигнала датчика получается при включении термистора по схеме, показанной на Рис 4.

Динамический диапазон изменения выходного сигнала сужается, чувствительность термистора в данном случае значительно не ухудшается, оставаясь постоянной в довольно большом температурном диапазоне.

Контроллер очень прост и состоит всего из четырех деталей.

Это мощный транзистор (я использую IRFZ44N выдерживает ток до 49Ампер).

Автомобильное реле-регулятор с управлением по плюсу (ВАЗ "классика").

Резистор120кОм.

Диод по мощнее, чтобы держал ток отдаваемый солнечной панелью (к примеру из автомобильного диодного моста).

Принцип работы тоже очень простой. Пишу для совсем не понимающих в электронике людей, так-как сам в ней ничего не понимаю.

Реле регулятор подключается к АКБ, минус на алюминиевую основу (31к), плюс на (15к), с контакта (68к) провод через резистор подсоединяется к затвору транзистора. У транзистора три лапки, первая это затвор, вторая сток, третья исток. Минус солнечной панели подключается к истоку, а плюс к АКБ, со стока транзистора минус солнечной панели идет на АКБ.

Когда реле-регулятор подключен и работает, то плюсовой сигнал с (68к) отпирает затвор и ток с солнечной панели течет через исток-сток в АКБ, а когда напряжение на АКБ превысит 14 вольт, реле-регулятор отключает плюс и затвор транзистора разряжаясь через резистор на минус закрывается тем самым разрывает минусовой контакт солнечной панели, и она отключается. А когда напряжение немного упадет реле-регулятор снова подаст плюс на затвор, транзистор откроется и снова ток от панели потечет в аккумулятор. Диод на плюсовом проводе СБ нужен чтобы ночью аккумулятор не разряжался, так-как без света солнечная панель сама потребляет электроэнергию.

Ниже наглядный рисунок соединения элементов контроллера.

Я не силен в электронике и может в моей схеме есть какие-то недочеты, но она работает без всяких настроек и работает сразу, и делает то что делают заводские контроллеры для солнечных панелей, а себестоимость всего порядка 200 рублей и час работы.

Ниже не совсем понятная фотография этого контроллера, вот так грубо и неряшливо просто на корпусе ящика закреплены все детали контроллера. Транзистор немного греется и я его закрепил на маленький вентилятор. Параллельно резистору поставил маленький светодиод, который показывает работу контроллера. Когда горит СБ подключена, когда нет значит аккумулятор заряжен, а когда быстро мигает аккумулятор почти заряжен и просто подзаряжается.


Этот контроллер работает уже более полугода и за это время никаких проблем, подключил и все, теперь не слежу за АКБ, все само работает. Это мой второй контроллер, первый я собирал для ветрогенераторов как балластный регулятор, о нем смотрите в предыдущих статьях в разделе мои самоделки.

Внимание - контроллер оказывается не полностью рабочий. После некоторого времени работы вяснилось что транзистор в данной схеме не полностью закрывается, и в аккумулятор все равно продалжает течь ток даже при привышении 14 вольт

Извиняюсь за нерабочую схему, сам долго пользовался и думал что все работает, а оказывается нет, и даже после полной зарядки в аккумулятор все равно идет ток. Транзистор закрывается только на половину при достижении 14 вольт. Схему пока убирать не буду, как время и желание появятся доделаю я этот контроллер и выложу рабочую схему.

А сейчас у меня в качестве контроллера балластный регулятор стоит, который отлично работает уже продрлжительное время. Как только напряжение переваливает за 14 вольт транзистор открывается и включает лампочку, которая сжигает все излишки энергии. Одновременно сейчас две солнечные панели и ветрогенератор на этом балласте.

Мне в руки попался первый бюджетный МРРТ контроллер, который я давно выслеживал на али, но все было жалко денег да и цена у него была около 4000 рублей. Но тут на распродаже я увидел его почти в пол цены и решил будь что будет и приобрел его на тесты. Когда я его первый раз увидел я был, честно говоря, в ступоре. Четыре кнопки управления, которые располагаются на передней панели и цветной дисплей, меня порадовали. Но когда я его разобрал, то что я увидел для меня стало неожиданностью.

У меня как-то на обзоре был ремонт повышающего преобразователя на 600 ватт, где я регулировал ток и напряжение при помощи сопротивлений. Тут плата по узлам немного схожа, но ключей больше. Я подумал, что это нужно для реализации защит и пропустил мимо глаз. Первую кондрашку я схватил, когда при подключении аккумулятора это чудо не включилось вообще. Но я встречал подобные девайсы, которые запитываются не от аккумулятора, а от входного питания. Так и вышло в данном случае. Но дальше больше.

Данный МРРТ контроллер, это реально что-то новое на рынке и за небольшие деньги, и с громадными возможностями, но, к сожалению, обычным людям или тем у кого система на 12 вольт он просто не подойдет, все из-за сложности настроек. Хотя в видео я показываю, как его легко настроить и при этом не нужно сидеть и понимать текст и картинки в инструкции.

Для тех, кто не видел распаковки, могут глянуть на моем черновом сайте, ПЕЛИНГ1 , тут же есть и его характеристики. По поводу вопроса: а тут реально есть МРРТ — Да есть, я отвечу сразу, но вот как она работает это нужно видеть.

Забегу вперед и скажу контроллеру без разницы какое напряжение на солнечных панелях, пусть хоть 10-11 вольт, пусть 60, на выходе вы получите то напряжение, которое нужно вам, а вот ток будет зависеть от напряжения. Из источника!

Данный контроллер я проверил и с ветрогенератора, и с солнечной панели на 11 вольт, и с 21, и с 42 вольтовой панели результат достоин аплодисментов. Вот именно о таком МППТ я и мечтал.

По поводу зарядки АКБ: он их заряжает и это главное.

К минусам можно отнести следующее:

  • не работает из коробки или без входного питания.
  • сложная настройка
  • нужно убедится, что после зарядки АКБ, напряжение не перескочит выставленный диапазон — я использовал 7 А аккумуляторы на 12 Вольт для тестирования перед установкой
  • не работает с зарядкой 12 вольтовых аккумуляторов, если входное напряжение выше 14 вольт, лучще ограничится до 13 и при этом нужно в этом убедится.
  • сильно гудит вентилятор, программная регулировка сильно не улучшает ситуацию, но роль свою выполняет, контроллер ледяной при входной мощности 100 ватт
  • слабые клемники под провода, нужны для нормальной работы провода сечением от 1кв/мм
  • погрешность составляет отображения параметров от 0.02В до 0.1В

Но плюсы для себя выносите сами!

Сегодня альтернативные источники энергии становятся популярнее, так как они экологически чистые, дешевые и практичные. Наиболее распространенным альтернативным энергетическим ресурсом выступает солнечная батарея. Для ее монтажа требуется приложить достаточно много усилий. В устройство солнечной батареи всегда входят контроллеры заряда, аккумуляторы, инверторы и предохранители. Собрать контроллер заряда солнечной батареи можно своими руками, чтобы сэкономить приличное количество денежных средств.

Примерно так выглядит стандартный измеритель уровня заряда для солнечной батареи.

Основное назначение

Контроллер заряда аккумуляторной батареи (АКБ) от солнечной батареи предназначен для поддержания уровня заряда аккумуляторов, который также не допускает их полную разрядку или перезарядку. К таким устройствам обычно подключают свинцовые аккумуляторы из-за своей распространенности, однако, возможно подключение других разновидностей. Контроллер для солнечных батарей выполняет большое количество функций, благодаря которым обеспечивается надежная и эффективная работа. Основными из них являются:

  • выбор наиболее эффективной системы заряда аккумулятора;
  • мониторинг заряженности батареи;
  • автоматическое включение и выключение;
  • грамотное распределение энергии;
  • защита от перенапряжения и разрыва цепи.

Разновидности

На сегодняшний день существует несколько типов контроллеров заряда. Рассмотрим некоторые из них.

MPPT-контроллер

Данная аббревиатура расшифровывается как Maximum Power Point Tracking , то есть мониторинг или отслеживание точки, где мощность максимальна. Такие устройства способны понижать напряжение солнечной батареи до напряжения аккумулятора . При таком раскладе сила тока на солнечной батарее уменьшается, в результате чего можно уменьшить сечение проводов и удешевить конструкцию. Также использование данного контроллера позволяет заряжать аккумулятор, когда солнечного света недостаточно, например, в условиях непогоды или ранним утром и вечером. Является наиболее распространенным из-за своей универсальности. Применяется при порядковом подключении. MPPT-контроллер имеет достаточно большой спектр настройки, благодаря чему обеспечивается наиболее эффективная зарядка.

Характеристики устройства:

  • Стоимость таких устройств высокая, однако она окупается при использовании солнечных батарей свыше 1000 Вт.
  • Входное суммарное напряжение в контроллер может достигать 200 В, это значит, что к контроллеру могут быть последовательно подключены несколько солнечных панелей, в среднем до 5. В пасмурную погоду общее напряжение последовательно соединенных панелей остается высоким, благодаря чему обеспечивается бесперебойная подача электроэнергии.
  • Данный контроллер может работать с нестандартным напряжением, например, 28 В.
  • Коэффициент полезного действия MPPT-контроллер ов достигает 98%, это означает, что практически вся солнечная энергия преобразуется в электрическую.
  • Возможность подключения аккумуляторов различного типа, таких как свинцовые, литий-железо-фосфатные и другие.
  • Максимальный ток заряда равен 100 А, при данной величине тока максимальная мощность, выдаваемая контроллером может достигать 11 кВт.
  • В основном все модели MPPT-контроллер ов способны функционировать при температурах от -40 до 60 градусов.
  • Для начала заряда АКБ необходимо минимальное напряжение в 5 В.
  • Некоторые модели имеют возможность одновременно работать с гибридным инвертором.

Контроллеры данного типа могут применяться как на коммерческих предприятиях, так и на загородных домах, так как имеются различные модели с отличающимися показателями. Для загородного дома подойдет MPPT-контроллер с максимальной мощностью 3,2 кВт, с наибольшим входным напряжением в 100 В. В больших объемах применяются гораздо более мощные контроллеры.

Технология данного устройства проще, чем у MPPT. Принцип работы такого устройства заключается в том, что, пока аккумуляторное напряжение находится ниже придела в 14,4 В, солнечная батарея подключена к аккумулятору практически напрямую, и заряд происходит достаточно быстро, после того, как значение будет достигнуто, контроллер понизит напряжение аккумулятора до 13,7 В, в результате чего аккумулятор зарядится полностью.

Характеристики устройства:

  • Напряжение на входе не более 140 В.
  • Работают с солнечными батареями на 12 и 24 В.
  • КПД практически равен 100%.
  • Возможность работы с множеством аккумуляторов различного типа.
  • Максимальное значение тока на входе достигает 60 А.
  • Температура функционирования от -25 до 55 градусов.
  • Возможность зарядить АКБ с нуля.

Таким образом, PWM-контроллеры применяются чаще всего, когда нагрузка не очень велика и солнечной энергии достаточно. Такие устройства больше подходят собственникам небольших загородных домов, где установлены солнечные панели небольшой мощности.

MPPT-контроллер, как уже было сказано выше, на сегодняшний день наиболее популярен, потому что имеет высокий КПД, способен работать даже в условиях недостатка солнечного света. MPPT-контроллер также способен работать на повышенных мощностях, идеально подойдет для большого загородного дома. Однако, при выборе определенного типа нужно учитывать объем входного и выходного тока, а также степень мощности и показатели напряжения.

Если выбрать контроллер, который не будет соответствовать требованиям, то в лучшем случае он просто выйдет из строя, а в худшем может испортиться проводка в доме.

Установка MPPT-контроллера на маленьких участках нецелесообразна, так как он не окупится. Если суммарное напряжение солнечной батареи больше 140 В, то следует применять MPPT-контроллер. PWM-контроллеры наиболее доступны, так как их цена начинается от 800 рублей. Есть модели за 10 тысяч, когда стоимость MPPT-контроллера примерно равна 25 тысячам.

Где устанавливается

Подключается контроллер между аккумулятором и панелью солнечных батарей. Однако, в схему подключения обязательно должен входить инвертор для солнечной батареи. Инвертор используется для преобразования постоянного 12 В тока, который идет от солнечной батареи, в переменный 220 В, текущий в любой розетке в доме, монтируется после аккумуляторной батареи.

Также важно наличие предохранителя , который выполняет защитную функцию от различных перегрузок и замыканий. Поэтому, для того чтобы обезопасить свой дом, необходимо произвести монтаж предохранителя. При наличии большого количества солнечных панелей желательна установка предохранителей между каждым элементом схемы.

На рисунке ниже показано, как выглядит инвертор (черная коробка):

Стандартная схема подключения выглядит примерно так, как представлена на рисунке ниже.

Схема показывает, что солнечные панели соединены с контроллером, электрическая энергия поступает в контроллер, а затем накапливается в аккумуляторе. Из аккумулятора она снова идет в контроллер, а после поступает в инвертор. А уже после инвертора идет распределение на потребление.

Как осуществить подключение самостоятельно

Подключить контроллер заряда MPPT для солнечных батарей достаточно просто. Для этого следует понимать принципиальную схему подключения, уметь в ней разбираться и ориентироваться, а также соединить все провода и элементы с полным соблюдением полярности, то есть «плюс» соединить с «плюсом», а «минус» с «минусом».

На рисунке ниже можно увидеть специальные отверстия с «плюсом» и минусом», собственно следует правильно засунуть в них нужные провода.

Более подробная схема представлена ниже.

Схема подключения довольно-таки проста, важно соединить все элементы, соблюдая полярность, а также необходимо учесть, чтобы они безопасно располагались в доме и не угрожали жизни. Справиться с такой задачей сможет каждый.

Возможно подключение нескольких аккумуляторов, однако здесь присоединять необходимо смешанным способом, а именно: группа аккумуляторных батарей подключается между собой параллельно, а к контроллеру последовательно. Подобную схему можно увидеть на рисунке ниже.

Как видно из схемы, количество аккумуляторов не ограничено. Однако, следует понимать, что при таком числе необходимо приобрести соответствующий инвертор, который будет способен справиться с такой большой нагрузкой.

Что будет, если не производить установку

Если не установить контроллеры MPPT или PWM для солнечных батарей, то потребуется самостоятельный контроль за уровнем напряжения на батареях. Осуществить это можно с помощью вольтметра, как показано на рисунке ниже.

Однако, при таком подключении уровень заряда аккумулятора не будет фиксироваться, в результате чего он может перегореть и выйти из строя. Данный способ подключения возможен при подключении небольших солнечных панелей для питания устройств мощностью не более 0,1 кВт. Для панелей, которые будут питать целый дом, монтаж без контроллера не рекомендуется, так как оборудование выйдет из строя намного раньше. Также из-за перезарядки аккумулятора могут выйти из строя: инвертор, так как он не будет справляться с таким напряжением, может от этого сгореть проводка и так далее. Поэтому следует проводить правильный монтаж, учитывать все факторы.

Одним из важнейших компонентов солнечной системы является контроллер заряда. Он может поставляться отдельно либо в комплекте с инвертором. Как понятно из названия, это устройство предназначено для контроля заряда АКБ, то есть контроллеры заряда для солнечной батареи следят за уровнем напряжения на аккумуляторе и служат для предотвращения полного разряда или перезаряда батареи.

Век глобальной доступности, когда можно найти абсолютно любой товар и информацию, позволяет не только приобрести контроллеры в любом специализирующемся магазине, но и собрать его своими руками. Для этого Вам понадобится схема устройства, которое Вы планируете изготовить, в нашем случае – это контроллер зарядки, и умение разбираться в электронике. Попытаемся снабдить Вас и тем, и другим.

Контроллеры зарядки для СБ: краткое описание

Существует несколько разновидностей описываемого устройства. Самые простые из них выполняет лишь одну функцию: включает и выключает батареи в зависимости от их заряда. Более «продвинутые» модели снабжены функцией отслеживания точки максимального значения мощности, что обеспечивает более высокий выходной ток по сравнению с током солнечной батареи. А это, в свою очередь, повышает КПД всей установки в целом.

Более усовершенствованные модели – способны понижать напряжение на СБ и поддерживать его на требуемом уровне. Наличие данной функции способствует более полной зарядке АКБ.

Любой контроллер, в том числе и самодельный, должен отвечать определенным требованиям:

  • 1,2P ≤ I×U, где P – суммарная мощность солнечных батарей всей системы; I – выходной ток контроллера; U – напряжение системы при разряженных аккумуляторах.
  • 1,2Uвх = Uх.х, где Uвх – максимально допустимое входное напряжение, Uх.х – суммарное напряжение холостого хода всех солнечных батарей системы.

Если нет возможности купить…

Конечно, зачастую прибор, собранный своими руками, будет хуже, чем аналогичное устройство, произведенное на заводе. Но сегодня мало кому можно доверять. И дешевые контроллеры для солнечной батареи, поставляемые из Китая, также могли быть собраны в какой-нибудь подсобке. Так зачем покупать устройство, в качестве которого Вы не уверены, если есть возможность соорудить его дома.

На рисунке 1 приведена простейшая схема, воспользовавшись которой Вы сможете своими руками собрать контроллер, пригодный для зарядки свинцово-кислотного аккумулятора 12 В с помощью маломощной СБ с током в несколько ампер. Изменив номиналы используемых элементов, Вы сможете адаптировать собранный прибор под АКБ с другими техническими характеристиками. Следует отметить, что данная схема предполагает использование вместо защитного диода полевого транзистора, управляемого компаратором.

Видео Вам в помощь:

Принцип работы достаточно прост: когда напряжение на АКБ достигнет заданного значения, контроллер остановит зарядку, в случае его снижения ниже порогового значения, зарядка будет вновь включена. При напряжении меньше 11 В нагрузка будет отключаться, а при напряжении больше 12,5 В, наоборот, подключаться к аккумулятору. Этот небольшой прибор спасет Ваш аккумулятор от самопроизвольного разряда в отсутствие солнца. На рисунке 2 представлен уже собранный комплект, состоящий из двух аккумуляторов, DC/DC-конверторов и индикации.

Контроллеры заряда солнечной батареи, собранные своими руками по более сложным схемам, смогут гарантировать Вам надежную и стабильную работу. Поэтому, если Вы чувствуете в себе силы, то ниже представлена еще одна схема. Она состоит из большего числа компонентов, зато и функционирует без «глюков» (рисунок 3).

Самодельный контроллер, собранный по данной схеме, подойдет для системы энергообеспечения, работающей, как от СБ, так и от ветрогенератора. Сигнал, который приходит от используемого источника альтернативной энергии, коммутируется реле, которое в свою очередь управляется полевым транзисторным ключом. Для регулировки порогов переключения режимов используются подстроечные резисторы.

Не бойтесь экспериментировать, ведь у самых лучших умов человечества тоже случались ошибки и падения, поэтому, если с первого раза Вам не удалось собрать своими руками надежный контроллер, не отчаивайтесь. Попробуйте еще раз, и, возможно, со второго раза у Вас все получится. Зато Вас будет «греть» само осознание того, что Вы сделали его сами.

Статью подготовила Абдуллина Регина

Как доработать устройство для контроля заряда: