Расположение лопастей. Результаты поиска по \"расположение лопастей\"

Изобретение относится к авиационной технике, а именно к проектированию и летным испытаниям воздушных винтов, установленных на летательных аппаратах (ЛА). Способ включает в себя неравномерное расположение лопастей по диску, устанавливаемых попарно с сохранением симметрии относительно ортогональных осей винта, комбинирование типов винтов с четным числом лопастей от четырех и более, определение математической модели расчета гармонических составляющих векторов переменных нагрузок для каждой лопасти в зависимости от углов между осями соседних пар лопастей 1 , суммирование векторов нагрузок от каждой лопасти на втулке винта по трем осям OY 1 , ОХ 1 , OZ 1 вращающейся системы координат с началом в центре втулки винта ЛА, затем проектирование полученных векторов нагрузок на неподвижные оси координат ЛА О н Х н и O н Z н, выполнение гармонического анализа проекций векторов нагрузок на продольную О н Х н и поперечную O н Z н оси координат, построение зависимости амплитуд этих гармонических составляющих от углов 1 и выбор из них значений расчетных углов, соответствующих минимальному уровню гармоник переменных нагрузок. Достигается увеличение ресурса конструкции ЛА по условиям усталостной прочности путем снижения нагрузок и вибраций. 1 з.п. ф-лы, 4 ил.

Рисунки к патенту РФ 2385262

Изобретение относится к авиационной технике, а именно к проектированию и летным испытаниям воздушных винтов, устанавливаемых на летательных аппаратах (ЛА), преимущественно на вертолетах, самолетах и автожирах, и может быть использовано для увеличения ресурса конструкции ЛА по условиям усталостной прочности (валов несущих, рулевых, тянущих и толкающих винтов, главных, рулевых и промежуточных редукторов, подредукторных рам, фюзеляжей, хвостовых и килевых балок).

Уровень техники

Известно, что силы и моменты, создаваемые каждой из лопастей воздушного винта, обуславливаются аэродинамическими нагрузками и возникающими при ее колебаниях инерционными силами и моментами. Нагрузки с лопастей передаются на втулку винта и складываются на ней по определенным правилам, а затем, трансформируясь по другим правилам, передаются на фюзеляж (Михеев Р.А. Прочность вертолетов. М.: Машиностроение, 1984. с.30).

Для облегчения понимания дальнейшего изложения сущности изобретения рассмотрим сначала процесс сложения и трансформации гармоник на классическом воздушном винте, т.е. на винте с равномерным расположением лопастей по диску (Михеев Р.А. Прочность вертолетов. М.: Машиностроение, 1984. с.30). При выводе правил суммирования обычно принимается, что лопасти идентичны по своим аэродинамическим, массовым и жесткостным характеристикам. При этом условии законы изменения нагрузок на отдельных лопастях будут отличаться друг от друга только сдвигом по времени (фазе). Амплитуды любой из составляющих гармоник для всех лопастей будут одинаковыми. Для того чтобы найти равнодействующую сил на втулке, удобно рассмотреть суммирование одноименных гармоник нагрузок, создаваемых на каждой из лопастей. При этом необходимо учесть направление действия нагрузок на разных лопастях. Нагрузку, приходящую с каждой лопасти, имеющей номер i, можно разложить по трем направлениям: по направлению оси винта - это векторы тяги и крутящего момента , а два других расположены в плоскости вращения перпендикулярно оси горизонтального шарнира и параллельно ей (перпендикулярно оси лопасти) . Векторы и от разных лопастей параллельны друг другу, а векторы и соседних лопастей повернуты относительно друг друга на угол , где K л - число лопастей винта.

Для гармоник нагрузок, векторы которых параллельны оси вращения винта, применяется первое правило суммирования (Михеев Р.А. Прочность вертолетов. М.: Машиностроение, 1984, с.30). Согласно этому правилу гармоники с номерами и кратными числу лопастей:

и амплитудами нагрузок A n различных лопастей складываются и дают на втулке равнодействующую, имеющую амплитуду и ту же частоту. Они без изменения амплитуд и частот гармонических составляющих сил передаются на фюзеляж. Такие гармоники называются проходными. Гармоники с номерами, некратными числу лопастей, т.е. не удовлетворяющие условию (1) ни при каком целом m и, на втулке взаимно уравновешиваются и не передаются на фюзеляж. Эти гармоники называются непроходными.

Для гармоник сил на втулке, находящихся в плоскости вращения винта и повернутых относительно друг друга на угол , равный углу между лопастями, применяется второе правило суммирования (Михеев Р.А. Прочность вертолетов. М.: Машиностроение, 1984. с.37).

В соответствии с этим правилом проходными являются гармоники с номерами, на единицу отличающимися от номеров, кратных числу лопастей:

и первая гармоника, которая соответствует значению m=0. Амплитуда этой нагрузки равна амплитуде гармоники одной лопасти, умноженной на половину числа лопастей. Это правило справедливо для винтов с числом лопастей К л 3.

При передаче этих гармоник в невращающуюся систему координат O н X н Z н гармоники с номерами mК л ±1 трансформируются в лопастные гармоники

Однако эти правила относятся к классическим винтам, т.е. к таким винтам, у которых лопасти расположены по диску равномерно, что не позволяет конструктору при проектировании воздушных винтов управлять нагрузками и вибрациями, передающимися с винтов на конструкцию.

Известны рулевые винты Х-образного типа (схема «ножницы»), установленные на вертолетах АН-64А «Апач» (США), Ми-28 и Ми-38 (Россия).

В описании вертолета «Апач», составленном по материалам открытой иностранной печати (Боевой вертолет Макдоннел-Дуглас АН-64А «Апач» (по материалам открытой иностранной печати). ОНТИ ЦАГИ, 1989. с.23), приводятся сведения о том, что использование неравномерного расположения между парами лопастей (острый угол Х=55°) привело к уменьшению уровня четвертой гармоники составляющей шума.

В работе (Рождественский М.Г., Самохин В.Ф. Аэродинамические и акустические особенности винта схемы «ножницы». Аэродинамика. Статья в Трудах шестого Форума РосВО, 2004. с.I-103 I-117) показано, что компоновка винта схемы «ножницы» имеет преимущества по сравнению с характеристиками винта с ортогональным расположением лопастей: увеличение тяги достигает 7%, а максимальное увеличение коэффициента полезного действия составляет 10%.

Рулевой винт типа «фенестрон» с десятью лопастями, неравномерно расположенными по диску, реализован на вертолетах ЕС130 и ЕС135 фирмы Eurocopter (Журнал «Вертолетная индустрия», декабрь 2007, с.25). По данным фирмы на вертолете с винтом, выполненным по такой концепции, удалось существенно снизить уровень шума, потребную мощность и повысить аэродинамическое качество.

Известен патент РФ № 1826421 Преобразуемый несущий винт преимущественно комбинированного ЛА, содержащий втулку винта, четыре лопасти с симметричным профилем, установленные под углом 90° для полета по-вертолетному, а для самолетного режима винт в плане становится Х-образным. В самолетном режиме консоли устанавливаются с меньшим углом стреловидности по отношению к набегающему потоку (угол стреловидности Х=30°), что позволяет улучшить несущие свойства системы «несущий винт-крыло».

Однако в данном патенте вопросы снижения уровней нагрузок и вибраций, действующих на конструкцию комбинированного ЛА, не рассматривались.

Технический результат, на достижение которого направлено изобретение, заключается в увеличении ресурса конструкции ЛА по условиям усталостной прочности путем снижения нагрузок и вибраций.

Для достижения названного технического результата в предлагаемом способе, включающем неравномерное расположение лопастей по диску, установленных попарно, с сохранением симметрии относительно ортогональных осей винта, согласно изобретению, комбинируют типы винтов с четным числом лопастей от четырех и более следующим образом:

10 - лопастной винт комбинируют из двух Х-образных и одного 2-хлопастного винтов.

Определяют математическую модель расчета гармонических составляющих векторов переменных нагрузок для каждой лопасти в зависимости от углов пар лопастей 1 . Суммируют векторы нагрузок от каждой лопасти на втулке винта по трем осям OY 1 , OX 1 , OZ 1 , вращающейся системы координат с началом в центре втулки винта ЛА, затем проектируют полученные векторы нагрузок на неподвижные оси координат ЛА O н X н, и O н Z н. Выполняют гармонический анализ проекций векторов нагрузок на продольную O н X н и поперечную O н Z н оси координат, строят зависимости амплитуд этих гармонических составляющих от углов 1 , из них выбирают значения углов, соответствующих минимальному уровню гармоник переменных нагрузок.

Для 10-лопастного винта определяют аналитически методом последовательных приближений сочетания углов 1 , 2 , при которых нагрузки и вибрации, действующие на конструкцию ЛА, равны нулю, где 1 - угол между осями соседних пар лопастей, а 2 - угол между осями смежных пар лопастей. Выбранные углы используют при компоновке винта.

Предлагаемый способ поясняется следующими фигурами:

На фиг.1 показана схема многолопастного винта с неравномерным расположением лопастей по диску, где

1 - вращающиеся оси координат винта OX 1 и OZ 1 ;

2 - оси лопастей № 1, 2, К л;

3 - втулка винта;

4 - оси О н Х н и О н Z н в неподвижной системе координат O н Х н Z н;

5 - углы между соседними лопастями 1 ;

7 - вертикальная ось координат О н Y н;

8 - азимутальное положение оси лопасти № 1.

На фиг.2 показаны зависимости амплитуд проекций нагрузок 10 на неподвижные оси координат от углов 1 5 для четвертой и двенадцатой гармоник, где

9 - амплитуды проекций векторов нагрузок на вертикальную ось координат O н Y н 7;

11 - амплитуды проекций векторов нагрузок на неподвижные оси координат 4: продольная О н Z н, поперечная O н Z н.

На фиг.3 приведены сочетания между углами 1 и 2 , соответствующие нулевому уровню амплитуды четвертой гармоники, где

5 - углы между осями соседних лопастей 1 ;

6 - углы между осями смежных лопастей 2 ;

12 - точка, соответствующая нулевой четвертой гармонике, полученная расчетом;

13 - интерполяционный полином, соответствующий нулевому уровню нагрузок по четвертой гармонике.

16 - частота колебаний, Гц.

Способ осуществляется следующим образом

В предлагаемом способе, включающем неравномерное расположение лопастей по диску, установленных попарно с сохранением симметрии относительно ортогональных осей винта, комбинируют типы винтов с четным числом лопастей от четырех и более следующим образом:

4-лопастной (Х-образный) винт образуют из двух пар лопастей;

6-лопастной винт компонуют из Х-образного и двухлопастного винтов;

8-лопастные винты формируют: из двух 4-лопастных классических винтов; из Х-образного и 4-лопастного классического винтов; из двух Х-образных винтов;

10-лопастной винт комбинируют из двух Х-образных и одного 2-хлопастного винтов.

Определяют математическую модель расчета гармонических составляющих векторов переменных нагрузок для каждой лопасти в зависимости от углов пар лопастей 1 . Суммируют векторы нагрузок от каждой лопасти на втулке винта по трем осям OY 1 , OX 1 , OZ 1 вращающейся системы координат с началом в центре втулки винта ЛА, затем проектируют полученные векторы нагрузок на неподвижные оси координат ЛА O н X н и О н Z н. Выполняют гармонический анализ проекций векторов нагрузок на продольную О н Х н и поперечную O н Z н оси координат, строят зависимости амплитуд этих гармонических составляющих от углов 1 , из них выбирают значения углов, соответствующих минимальному уровню гармоник переменных нагрузок.

Для 10-лопастного винта определяют аналитически методом последовательных приближений сочетания углов 1 , 2 , при которых нагрузки и вибрации, действующие на конструкцию ЛА, равны нулю, где 1 - угол между осями соседних пар лопастей, a 2 - угол между осями смежных пар лопастей. Выбранные углы используют при компоновке винта.

Таким образом, полученные значения углов 1 и 2 , соответствующие минимальным и нулевым гармоническим составляющим, позволяют существенно снизить уровень нагрузок и вибраций, действующих на конструкцию ЛА.

Сущность изобретения поясняется схемой многолопастного винта, приведенной на фиг.1. Лопасти нумеруются (например, на вертолете) по мере прохождения их над хвостовой балкой (отрицательное направление оси O н X н 4 в неподвижной системе координат). При выборе вращающихся осей координат ОХ 1 Z 1 ось OX 1 1 направляется по оси лопасти № 1. Ось OZ 1 1 должна быть перпендикулярна оси OX 1 и опережать ее.

В неподвижной системе координат продольная ось O н X н 4 направлена вперед, а поперечная ось O н Z н 4 - вправо для несущего винта и вверх для рулевого винта.

Оси координат во вращающейся OY 1 и в невращающейся O н Y н 7 системах координат направляются по оси вращения в направлении тяги винта (эти оси совпадают).

Рассмотрим изменение n-гармоник переменных нагрузок для каждой лопасти i в зависимости от азимутального положения 8 оси лопасти № 1 и углов между лопастями 1 5 и 2 6 (обозначим последние два угла как j):

Находим равнодействующую сил винта , приходящих на втулку винта от каждой лопасти, для каждой из гармоник n, количество лопастей К л - произвольное и четное:

В результате сложения одноименных гармоник получаются зависимости равнодействующих нагрузок на периоде вращения винта при разных углах между парами лопастей 1 5 и 2 6.

Путем аналитических выкладок и численных расчетов можно показать, что проходными гармониками нагрузок, векторы которых параллельны оси вращения винта, является ряд гармоник с четными номерами, т.е. n=2, 4, 6, ... N. Это правило авторы изобретения назвали «третьим правилом суммирования гармоник». Максимальный номер четной гармоники N устанавливается из опыта летных испытаний. Таким же способом можно доказать, что все нечетные гармоники рассматриваемых нагрузок являются непроходными.

Определим значения углов j , при которых амплитуды гармоник будут минимальными. Для решения задачи минимизации нагрузок целесообразно считать, что лопасти винта идентичны по своим аэродинамическим, массовым и жесткостным характеристикам, а амплитуды разных гармоник на всех лопастях равны единичной нагрузке, т.е. .

По аналогии с (1) запишем выражения для гармоник в плоскости OX 1 Z 1 каждой лопасти i на периоде вращения винта в зависимости от азимутального положения оси лопасти № 1 с учетом углов между осями пар лопастей j 5 и 6:

Проекции векторов нагрузок на вращающиеся оси координат будут равны и .

Начало координат О (например, для вертолета) расположим в центре втулки винта. Азимут вращающейся оси OX 1 , т.е. 8, будем отсчитывать от отрицательного направления оси O н X н 4. Тогда проекции гармоник нагрузок на неподвижные оси координат будут равны:

Рассмотрим четыре варианта исполнения комбинированных винтов: 4-лопастной, 6-лопастной, 8-лопастной (три варианта) и 10-лопастной. Углы между лопастями на первых трех винтах можно выразить с помощью одного угла 1 5, а на 10-лопастном винте - двумя углами: между соседними лопастями 1 5 и смежными 2 6, т.е. следующими после соседних пар лопастей по вращению и против вращения винта, что наглядно иллюстрируется на фиг.1.

Приравняв сумму гармонических составляющих (2) и (3) для каждой из гармоник нулю, находим углы j , соответствующие нулевым значениям амплитуд:

;

;

.

Выполним гармонический анализ функций и при разных значениях углов j .

Авторами предлагаемого изобретения проведен расчет зависимостей амплитуд проекций нагрузок на три указанные выше оси координат от угла 1 для 4-, 6- и 8-лопастного винтов. При этом рассмотрены все четные гармоники в диапазоне n=2 32. Для 10-лопастного винта рассчитаны сочетания соседних 1 и смежных 2 углов, при которых четные гармоники в том же диапазоне номеров n=2 32 равны нулю.

Результаты расчетов поясняются графиками на фиг.2 и 3, на которых изображены:

фиг.2 - зависимости амплитуд проекций нагрузок 10 на вертикальную АПрY н 9, продольную АПрX н 10 и поперечную AПрZ н 10 оси координат, 4-лопастной винт, гармоники четыре и двенадцать.

Из приведенных данных на фиг.2 следует, что максимальные значения амплитуд проекций нагрузок равны: на вертикальную ось - сумме сил отдельных лопастей (в нашем случае - числу лопастей винта), а амплитуды проекций на продольную и поперечную оси равны половине числа лопастей. На графиках фиг.2 видно, что большие диапазоны занимают углы 1 , при которых амплитуды нагрузок меньше, чем на классических винтах.

Сочетания углов между соседними 1 5 и смежными 2 6 лопастями на 10-лопастном воздушном винте приведены на фиг.3 (четвертая гармоника). Видно, что зависимости между углами 1 и 2 имеют эллипсовидный характер. Точки 12 на графиках получены расчетным путем. При анализе результатов расчета следует иметь в виду, что указанные зависимости представляют из себя кривые 13, проведенные по точкам. Число сочетаний углов 1 и 2 является бесконечно большим и оно увеличивается по мере увеличения номера гармоники n. Таким образом, при проектировании 10-лопастного винта имеются большие возможности для снижения или обнуления целого ряда гармонических составляющих переменных нагрузок.

На фиг.4 приведен амплитудный спектр вибраций 14 на шпангоуте № 2 килевой балки вертолета Ми-38 ОП-1, где

15 - амплитуды виброперегрузок (в единицах g) на килевой балке (КБ), шпангоут 2 (шп 2);

16 - частота колебаний, Гц.

На вертолете Ми-38 установлен 4-лопастной Х-образный рулевой винт с углом между осями лопастей 1 =38°.

Из приведенной зависимости следует подтверждение основных положений предлагаемого изобретения. Так, в амплитудном спектре виброперегрузок, определяемых нагрузками на Х-образном рулевом винте, отмечается вторая гармоника, которая отсутствует на классическом 4-лопастном винте. Четвертая гармоника амплитудного спектра (фиг.4), которая является проходной лопастной на классическом винте, в данном случае значительна по величине. Предлагаемым авторами способом она могла бы быть снижена практически до нуля. Для этого необходимо, чтобы углы между осями лопастей были равны

Практическое значение предлагаемого способа заключается в том, что он позволяет создавать воздушные винты, у которых любая гармоника или целый ряд гармоник нагрузок и вибраций, передающихся с воздушного винта на конструкцию летательного аппарата, может быть уменьшена до нуля или сведена до минимума. В частности, в вертолетостроении актуальной является проблема обеспечения усталостной прочности валов несущих и рулевых винтов, главных, хвостовых и промежуточных редукторов, подредукторных рам, средних и хвостовых частей фюзеляжа, килевых (концевых) балок.

Использование изобретения позволит уменьшить уровень нагруженности и вибраций в указанных частях конструкции и существенно повысить их ресурс по условиям усталостной прочности.

Известно (см. Богданов Ю.С. и др. Конструкция вертолетов. М.: Машиностроение, 1990. с.70), что даже небольшое изменение амплитуды переменных нагрузок (напряжений 1 , в которых амплитуды нагрузок значительно меньше, чем на классических винтах. Поэтому имеет существенное значение не только обнуление гармоник, но и их уменьшение по сравнению с нагрузками на классических винтах.

При летных испытаниях вертолетов Ми-28 и Ми-38, имеющих Х-образные рулевые винты, выявлено, что в записях вибраций, передающихся на хвостовую часть фюзеляжа, отмечены четные гармоники, начиная со второй. Предложенный способ легко объясняет появление таких «непривычных» для специалистов гармоник. Поэтому предложенное изобретение может быть использовано также при анализе результатов летных прочностных испытаний вертолетов, самолетов и автожиров с воздушными винтами, выполненными по предлагаемой концепции.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ уменьшения нагрузок и вибраций на летательных аппаратах, имеющих многолопастные воздушные винты с четным числом лопастей, включающий неравномерное расположение лопастей по диску, устанавливаемых попарно с сохранением симметрии относительно ортогональных осей винта, отличающийся тем, что комбинируют типы винтов с четным числом лопастей от четырех и более, определяют математическую модель расчета гармонических составляющих векторов переменных нагрузок для каждой лопасти в зависимости от углов между осями соседних пар лопастей 1 , суммируют векторы нагрузок от каждой лопасти на втулке винта по трем осям OY 1 , ОХ 1 , OZ 1 вращающейся системы координат с началом в центре втулки винта летательного аппарата, а затем проектируют полученные векторы нагрузок на неподвижные оси координат летательного аппарата О н Х н и O н Z н, выполняют гармонический анализ проекций векторов нагрузок на продольную О н Х н и поперечную O н Z н оси координат, строят зависимости амплитуд этих гармонических составляющие от углов 1 , из них выбирают значения расчетных углов, соответствующие минимальному уровню гармоник переменных нагрузок, а для 10-лопастного винта определяют аналитически методом последовательных приближений сочетания углов 2 - угол между осями смежных пар лопастей, производят компоновку винтов на летательном аппарате в соответствии с выбранными расчетными углами между осями пар лопастей.

2. Способ уменьшения нагрузок и вибраций на летательном аппарате, имеющих многолопастные воздушные винты с четным числом лопастей по п.1, отличающийся тем, что комбинируют типы винтов с четным числом лопастей от четырех и более следующим образом: 4-лопастной (Х-образный) винт образуют из двух пар лопастей; 6-лопастной винт компонуют из Х-образного и двухлопастного винтов; 8-лопастные винты формируют из двух 4-лопастных классических винтов из Х-образного и 4-лопастного классического винтов или из двух Х-образных; 10-лопастной винт комбинируют из двух Х-образных и одного 2-лопастного винтов.

Типы ветрогенераторов

Ветряки можно различать по:
— количеству лопастей;
— типу материалов лопастей;
— вертикальному или горизонтальному расположению оси установки;
— шаговому варианту лопастей.

По конструкции ветрогенераторы делятся по количеству лопастей, одно, двухлопастные, трехлопастные и многолопастные. Наличие большого числа лопастей позволяет вращать их очень малому ветру. Конструкцию лопастей можно разделить на жесткую и парусную. Парусные ветряки дешевле других, но нуждаются в частом ремонте.

Один из видов ветрогенераторов — горизонтальный

Ветрогенератор вертикального исполнения начинают вращаться при малом ветре. Им не нужен флюгер. Однако по мощности они уступают ветрякам с горизонтальной осью. Шаг лопастей ветрогенераторов может быть фиксированным или изменяемым. Изменяемый шаг лопастей дает возможность увеличивать скорость вращения. Эти ветряки дороже. Конструкции ветряка с фиксированным шагом надежны и просты.

Вертикальный генератор

Эти ветряки менее затратные в обслуживании, так как устанавливаются на небольшой высоте. Также они имеют меньше движущихся частей, легче в ремонте и производстве. Такой вариант установки нетрудно изготовить своими руками.

Ветрогенератор вертикального исполнения

Конструкция ветрогенератора с оптимальными лопастями и своеобразным ротором дает высокий КПД и не зависит от направления ветра. Ветрогенераторы вертикальной конструкции бесшумные. Вертикальный ветрогенератор имеет несколько типов исполнения.

Ортогональные ветрогенераторы

Ортогональный ветрогенератор

Такие ветряки имеют несколько параллельных лопастей, которые устанавливаются на расстоянии от вертикальной оси. На работу ортогональных ветряков не влияет направление ветра. Устанавливаются они на уровне земли, что облегчает монтаж и эксплуатацию установки.

Ветрогенераторы на основе ротора Савониуса

Лопасти этой установки представляют собой особые полуцилиндры, которые создают высокий крутящий момент. Из недостатков этих ветряков можно выделить большую материалоемкость и не высокую эффективность. Для получения высокого крутящего момента с ротором Савониуса устанавливают еще ротор Дарье.

Ветряки с ротором Дарье

Наряду с ротором Дарье эти установки имеют ряд пар лопастей с оригинальной конструкцией для улучшения аэродинамики. Достоинством этих установок является возможность их монтажа на уровне земли.

Геликоидный ветрогенераторы.

Они представляют собой модификацию ортогональных роторов с особой конфигурацией лопастей, что дает равномерное вращение ротора. За счет снижения нагрузки на элементы ротора срок их службы увеличивается.

Ветрогенераторы на основе ротора Дарье

Многолопастные ветровые установки

Многолопастные ветровые генераторы

Ветряки такого типа представляют собой измененный вариант ортогональных роторов. Лопасти на этих установках устанавливаются в несколько рядов. Направляет ветровой поток на лопасти первый ряд неподвижных лопастей.

Парусный ветрогенератор

Основное достоинство такой установки — это способность работать при небольшом ветре от 0,5 м/с. Парусный ветрогенератор устанавливается в любом месте, на любой высоте.

Парусный ветрогенератор

Из преимуществ можно выделить: маленькую скорость ветра, быструю реакцию на ветер, легкость конструкции, доступность материала, ремонтопригодность, возможность изготовить ветряк своими руками. Недостаток — это возможность поломки при сильном ветре.

Ветрогенератор горизонтальный

Ветрогенератор горизонтальный

Эти установки могут иметь разное число лопастей. Для работы ветрогенератора важно выбрать правильное направление ветра. Эффективность работы установки достигается небольшим углом атаки лопастей и возможности их регулировки. У таких ветрогенераторов небольшие габариты и вес.

Центробежный вентилятор — устройство механического типа, которое способно работать с воздушными или газовыми потоками, имеющими низкий уровень увеличения давления. Крутящаяся крыльчатка обеспечивает движение воздушных масс. Система работы заключается в том, что кинетическая энергия увеличивает давление потока, который и оказывает противодействие всем воздуховодам и заслонкам.

Центробежный вентилятор намного мощнее осевого, при этом имеет экономных расход электроэнергии.

Данное устройство позволяет изменить направление воздушной массы с уклоном в 90 градусов. При этом во время работы вентиляторы не создают много шума, а за счет своей надежности их диапазон рабочих условий достаточно широк.

Некоторые особенности

Хотелось бы обратить внимание, что принцип действия центробежного вентилятора построен таким образом, что он качает постоянный объем воздуха, а не массу, что позволяет фиксировать скорость расхода воздуха. Кроме того, такие модели намного экономичней, чем осевые аналоги, а конструкцию при этом имеют проще.

Схема элементов центробежного вентилятора: 1 – ступица, 2 – основной диск, 3 – рабочие лопатки, 4 – передний диск, 5 – лопастная решетка, 6 – корпус, 7 – шкив, 8 – подшипники, 9 – станина, 10, 11 – фланцы.

Автопромышленность использует данные вентиляторы, чтобы охлаждать двигатели внутреннего сгорания, которые отдают «в пользование» свою энергию такому аппарату. Также это вентиляционное устройство применяется для перемещения газовых смесей и материалов в вентиляционных системах.

Могут использоваться как одно из составляющих систем отопления или охлаждения. Такая техника применима и с целью очистки и фильтрации промышленных систем.

Для обеспечения нужного уровня давления и расхода используется обычно целая серия вентиляторов. Конечно, центробежные модели имеют более высокую мощность, но при этом остаются экономичными (всего лишь 12% затрат от электричества).

Устройство центробежного вентилятора состоит из крыльчатки, которая оснащена несколькими шеренгами лопастей (ребер). В центре расположен вал, который проходит через весь корпус. Воздушные массы попадают с края, где находятся лопасти, далее за счет конструкции происходит их поворот на 90 градусов, а затем благодаря центробежной силе они разгоняются еще больше.

Вернуться к оглавлению

Типы приводных механизмов

Во многом на работу вентилятора, а именно на вращение лопастей, влияет тип привода. На сегодняшний день их 3:

  1. Прямой. В данном случае крыльчатка напрямую соединена с валом двигателя. От скорости вращения мотора будет зависеть и скорость лопастей. В качестве недостатка этой модели выделяют следующие: если двигатель не имеет регулировки своей скорости, то и вентилятор будет работать в одном режиме. Но если учесть, что холодный воздух имеет более высокую плотность, то кондиционирование будет само по себе происходить быстрее.
  2. Ременный. В данном типе устройства имеются шкивы, которые расположены на валу двигателя и крыльчатки. Соотношение диаметров шкивов обоих элементов влияют на скорость работы лопастей.
  3. Регулируемый. Тут регулировка скорости происходит за счет наличия гидравлической или магнитной муфты. Ее месторасположение — промеж валов мотора и импеллера. Чтобы проще было осуществить этот процесс, такие центробежные вентиляторы имеют автоматизированные системы.

Вернуться к оглавлению

Составляющие центробежного вентилятора

Схема рабочих колес центробежных вентиляторов: а – барабанная, б – кольцевая, в, г – с коническими покрывающими дисками, д — однодисковые, е — бездисковые.

Как и любая другая техника, вентилятор будет исправно работать только при соответствующих элементах конструкции.

  1. Подшипники. Чаще всего данный тип устройства имеет маслонаполненные подшипники роликового типа скольжения. Отдельные модели могут обладать водяной системой охлаждения, которая чаще всего применяется в работе с горячими газами, что предотвращает перегрев подшипников.
  2. Лопасти и заслонки. Основная функция заслонок — управление газовыми потоками при входе и выходе. Отдельные модели центробежных эксгаустеров могут иметь их с обеих сторон или только с одной — входа или выхода. «Входящие» заслонки управляют количеством поступаемого газа или воздуха, а «выходящие» сопротивляются воздушному потоку, который управляет газом. Заслонки, что расположены на входе лопастей, способствуют уменьшению потребления электроэнергии.

Сами плицы находятся на втулке колеса центростремительного вентилятора. Есть три стандартных расположения лопастей:

  • лопасти загнуты вперед;
  • лопасти загнуты назад;
  • лопасти прямые.

В первом варианте лопасти имеют лезвия с направлением по движению колеса. Такие вентиляторы «не любят» твердых примесей в эрлифтных потоках. Основное их назначение — большой поток с низким давлением.

Второй вариант оснащен искривленными лезвиями против движения колеса. Таким образом достигается аэродинамический швеллер и относительная экономичность конструкции. Такой способ применяется в работе с потоками газовой консистенции низкого и умеренного уровня насыщения жесткими компонентами. В качестве дополнения имеют покрытие от повреждений. Очень удобно то, что такой центробежный вентилятор имеет широкий диапазон регулировок скоростей. Они намного эффективней моделей с лопастями, изогнутыми вперед или прямыми, хотя последние и стоят дешевле.

Третий вариант имеет лопасти, которые расширяются сразу от втулки. Такие модели имеют минимальную чувствительность к оседанию твердых частиц на лопастях вентилятора, но при этом издают много шума во время эксплуатации. Также они имеют быстрый темп работы, низкие объемы и высокий уровень давления. Часто используют с целью аспирации, в пневматических системах для транспортировки материалов и в других схожих работах.

Вернуться к оглавлению

Типы центробежных вентиляторов

Есть определенные стандарты, по которым изготавливается данная техника. Следует выделить следующие типы:

    1. Аэродинамическое крыло. Такие модели имеют широкое применение в сфере непрерывных работ, где постоянно присутствуют высокие температуры, чаще всего это нагнетательные и вытяжные системы. Имея высокий показатель по производительности, они бесшумны.
    2. Обратно загнутые лопасти. Обладают высокой эффективностью. Конструкция этих вентиляторов препятствует накоплению пыли и мелких частиц на лопастях. Имеет достаточно прочную конструкцию, что позволяет применять их для областей с высоким угнетением.
    3. Ребра, изогнутые в обратную сторону. Рассчитаны для большой кубатуры воздушных масс с относительно низким уровнем давления.
    4. Радиальные лопасти. Достаточно прочны, могут обеспечить высокое давление, но со средним уровнем эффективности. Направляющие ротора имеют специальное покрытие, которое защищает их от эрозии. Кроме того, такие модели имеют достаточно компактные габариты.
    5. Ребра, загнутые вперед. Предназначены для тех случаев, когда предстоит работа с большими объемами воздушных масс и наблюдается высокое давление. Эти модели тоже имеют хорошую стойкость к эрозии. В отличие от моделей «заднего» типа такие агрегаты имеют меньшие размеры. Такой вид крыльчатки имеет самый большой расход объема.
    6. Гребное колесо. Данное устройство — открытое колесо без какого-либо корпуса или кожуха. Применим для помещений, где присутствует большая запыленность, но при этом, увы, такие устройства не обладают высокой эффективностью. Допустимо использование при высоких температурах.

Результаты поиска

Нашлось результатов: 122140 (1,55 сек )

Свободный доступ

Ограниченный доступ

Уточняется продление лицензии

1

Методы физического и математического моделирования метод. указания к выполнению индивидуальных заданий

Приведены задания к практическим занятиям по дисциплине "Методы физического и математического моделирования" способствуют приобретению навыков разработки алгоритмов, составления блок-схем, программирования и работы на компьютере (ввод программы, ее отладка).

указанном формате на дисплей" LPRINT USING"вывод численных переменных в указанном формате на печать" TAB "расположение <...> выполнение операции или группы операций, в результате которых изменяется значение, форма представления или расположение <...> бумага Межстраничный соединитель указание связи между разъединенными частями схем алгоритмов программ, расположенных

Предпросмотр: Методы физического и математического моделирования.pdf (0,1 Мб)

2

ИССЛЕДОВАНИЕ РАБОТЫ ТРЕХЪЯРУСНОГО ПЛУГА АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА ТЕХНИЧЕСКИХ НАУК

САРАТОВСКИЙ ИНСТИТУТ МЕХАНИЗАЦИИ СЕЛЬСКОГО ХОЗЯЙСТВА ИМЕНИ М. И. КАЛИНИНА

Экспериментальные исследования подтвердили теоретические выводы, сделанные из предположения, что сила тяги всегда проходит через центры сопротивления плуга в горизонтальной и вертикальной плоскостях.

году писал: "Расположение сопротивления Н (сопротивление пласта) и сида |N (реакция на полевой доске) <...> Rxz»» расположенных на высоте равной половине глубины пахоты от носков соответствующих лемехов. <...> На поперечные планки с помощью отвесов проек­ тировались расположенные над планками точки ребра динамо

Предпросмотр: ИССЛЕДОВАНИЕ РАБОТЫ ТРЕХЪЯРУСНОГО ПЛУГА.pdf (0,0 Мб)

3

№9 [Системный администратор, 2016]

Журнал «Системный администратор» – ведущее российское отраслевое издание для ИТ-специалистов. Его цель – предоставление полной и объективной информации о решениях, продуктах и технологиях современной ИТ-отрасли.90% статей в журнале носят прикладной характер, снабжены примерами, таблицами, графическим материалом. Именно поэтому журнал «Системный администратор» является настольным пособием для ИТ-профессионалов и тех, кто решил делать карьеру в ИТ. Издается с октября 2002 года.

----------# Переменные #-------------# место создания каталога с вики base=/home/user/site1 # место расположение <...> каталог с файлами движка MediaWiki, ↵ не обязательный параметр, по умолчанию = "$mw"" echo "" echo "Расположение <...> В таких случаях антивирус, расположенный на втором уровне статического анализа, проверяя входящее письмо <...> в который входят пять компонентов: Dial Plan, Voice Policy, Route, PSTN Usage, Trunk Configuration, расположенных <...> Вторым> шагом является создание «подменяемого запроса», идентичного по тексту исходному (с теми же расположением

Предпросмотр: Системный администратор №9 2016.pdf (0,3 Мб)

4

Мультиагентная технология управления мобильными ресурсами в режиме реального времени учеб. пособие

ИУНЛ ПГУТИ

Учебное пособие включает разделы, которые подробно описывают современное состояние и методы адаптивного планирования, мультиагентный подход к решению задач динамического планирования ресурсов в реальном времени, архитектуру и реализацию мультиагентной системы управления транспортными ресурсами. Теоретический материал иллюстрируется большим количеством примеров динамического планирования. Учебное пособие содержит контрольные вопросы и упражнения по всем разделам.

Для того чтобы ввести новую запись, необходимо нажать на кнопку «Создать», расположенную в верхней части <...> тягачей Опция "Расположение тягачей" предназначена для отображения всех тягачей на указанную дату (Рисунок <...> Рисунок 73 – Расположение тягачей 3.4.4.3 Просмотр маршрута «Просмотр маршрута» («Мониторинг»  «Просмотр <...> Планируемое расположение ресурсов на момент предпочитаемого начала выполнения заявки AT000018 приведено <...> Рисунок 113 – Задание предпочитаемого ресурса Расположение ресурсов на момент начала планирования заявок

Предпросмотр: Мультиагентная технология управления мобильными ресурсами в режиме реального времени.pdf (0,4 Мб)

5

№8 [Транспортное строительство, 2010]

Информация об организациях и предприятиях транспортного строительства, их возможностях, сложности и качестве выполняемых работ и предоставляемых услуг.

Для ротора с радиальным расположением лопастей (β = 0) неравенства (16), (17) принимают вид: N � 0 V0 <...> При использовании роторов с по� добным расположением лопастей в реально действующих технологических машинах <...> Роторы с подобным расположением лопастей целесообразно применять в тех случаях, когда требуется интенсивный <...> При радиальном расположении лопастей ротора уравне� ние (13) относительного движения частиц по ним остается <...> Проведенные теоретические исследования позволяют сде� лать следующие выводы: расположение лопастей

Предпросмотр: Транспортное строительство №8 2010.pdf (0,2 Мб)

6

Ветеринарно-санитарная экспертиза лаб. практикум

В учебном пособии рассмотрены современные органолептические и лабораторные методы ветеринарно-санитарной экспертизы мяса и мясных продуктов, а также продуктов растительного происхождения. В лабораторном практикуме приведены требования к качеству и безопасности продуктов, основанные на действующих нормативных документах. Пособие содержит краткую теоретическую информацию по ветеринарно-санитарной экспертизе продуктов, способствующую лучшему освоению дисциплины.

пищевод в едином сочленении подвешивают за трaхею на крюк или размещают на столе таким образом, чтобы их расположение <...> Разрезают все бронхиальные, а также глубокие шейные лимфатические узлы, расположенные вдоль трахеи. <...> Топография расположения основных внутренних органов и крупных лимфатических узлов близка к таковой у <...> личинки трихинелл видны как круглые черви длиной до 1 мм с заостренными краями, закрученные в спираль, расположенные <...> при помощи цветных стандартов, запаянных в пробирки, и компаратора с шестью гнездами (рисунок 1.17), расположенными

Предпросмотр: Ветеринарно-санитарная экспертиза.pdf (0,6 Мб)

7

Живу в Сибири, с давних пор увлекаюсь охотой, рыбалкой. Замечательны наши места. Много рек, озёр, богатых рыбой и дичью Больше всего люблю охотиться на водоплавающую птицу. Но взять её порой бывает невозможно: непроходимые топи, плавни, зыбуны, непролазные камыши.

<...> с внешним уголком; 12 – шарнирная лопасть ; 13 – внешний дюралюминиевый уголок. <...> <...> <...> А с боковым расположением лопастей можно ходить как по чистым, так и по заросшим водоёмам.

8

ИССЛЕДОВАНИЕ И ОБОСНОВАНИЕ ОПТИМАЛЬНЫХ ПАРАМЕТРОВ И РЕЖИМА РАБОТЫ РОТОРНЫХ КАНАВООЧИСТИТЕЛЬНЫХ МАШИН АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА ТЕХНИЧЕСКИХ НАУК

Настоящая работа посвящена выбору наиболее рационального типа рабочего органа, исследованию и обоснованию основных параметров и режима работы его применительно к очистке мелких и. средних каналов

При радиальном расположении лопастей где" FiroSi3ifft>vf v„ 5 ~ 5б4870йч " (22) Sx - длина лопасти , <...> ^n ;" " . в ~ 2648700ч » (23) г д е " . " " " " с0 - коэффициент, учитывающий расположение центра, <...>лопастями . <...>лопастях . <...> При таком расположении струя грунта, выброшенного рабочим органом, идет более компактно, а вблизи рабочего

Предпросмотр: ИССЛЕДОВАНИЕ И ОБОСНОВАНИЕ ОПТИМАЛЬНЫХ ПАРАМЕТРОВ И РЕЖИМА РАБОТЫ РОТОРНЫХ КАНАВООЧИСТИТЕЛЬНЫХ МАШИН.pdf (0,0 Мб)

9

РЕЗУЛЬТАТЫ ТЕОРЕТИЧЕСКИХ И ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ МНОГОЛОПАСТНЫХ РАБОЧИХ ОРГАНОВ РОТОРНОГО ТИПА ДЛЯ РАСПРЕДЕЛЕНИЯ ТВЕРДОГО НАВОЗА [Электронный ресурс] / А.П. Дьячков [и др.] // Вестник Воронежского государственного аграрного университета.- 2014 .- №1-2 .- С. 80-86 .- Режим доступа: https://сайт/efd/386825

Представлены результаты теоретических и экспериментальных исследований процесса распределения твердого навоза разбрасывателем из валков с многолопастными рабочими органами роторного типа. Определены рациональные значения конструктивных и режимных параметров предложенной конструкции, обеспечивающие качественное внесение твердых органических удобрений, соответствующее агротехническим требованиям.

последнего ряда роторов, равный R = 0,4 м, обеспечивающий теоретическую дальность полета, при радиальном расположении <...> Теоретические зависимости «предельной» зоны загрузки от угла наклона лопастей при различной длине лопастей <...> Результаты теоретических исследований по обоснованию количества рядов лопастей и радиуса лопастей каждого <...> Все лопасти на роторе устанавливали радиально. Ширина лопастей равнялась bл = 0,13 м. <...> скорости движения (Vр = 1,55…1,63 м/с), количестве рядов лопастей (от 2 до 4 рядов) и количестве лопастей

10

Расчет центробежного компрессора метод. указания по курсовому проектированию по дисциплине "Тепловые двигатели и нагнетатели"

Методические указания представлены для студентов, обучающихся по направлению "Теплоэнергетика" очной и заочной форм обучения.

рабочего колеса в двух проекциях с показом расположения лопастей и корпус насоса. <...> По форме и взаимному расположению линий тока в плане можно судить о плавности формы лопасти (рисунок <...> Построение спирального отвода, расположенного за лопаточным диффузором, осуществляется тем же способом <...> соотношениям bсп/bд = 1,0÷1,5 угол раскрытия сечений спирали  = 50÷60°, в то время как для спирали, расположенной <...> Лопаточный диффузор Конструктивно лопаточный диффузор представляет решетку профилированных лопаток, расположенную

Предпросмотр: Расчет центробежного компрессора.pdf (0,4 Мб)

11

М.: ПРОМЕДИА

Число и расположение лопастей в пределах входного устройства сырья. 6. <...> и количество лопастей ). <...> Рис. 9–11 показывают расположение CFD для трех высот вместе с линиями траектории пара окрашенными с помощью <...> В случае с радиальным противоположным расположением штуцеров достигли максимальной пиковой скорости 143,5 <...> минимального увлечения в пределах критериев оптимального распределения пара и имеет участок пространства для расположения

12

ИЗЫСКАНИЕ И ИССЛЕДОВАНИЕ РОТАЦИОННОГО РАБОЧЕГО ОРГАНА ДЛЯ АКТИВНОГО РЫХЛЕНИЯ И СЕПАРАЦИИ ПОЧВ В КАРТОФЕЛЕУБОРОЧНЫХ МАШИНАХ АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА ТЕХНИЧЕСКИХ НАУК

БЕЛОРУССКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЗЕМЛЕДЕЛИЯ

Поэтому совершенствование существующих и изыскание новых методов сепарации почвы и рабочих органов для этих целей является важной задачей.

расположенный за ротором. <...> - угол трения клубней о лопасти . <...> Возможны три способа расположения лопасти на барабане ротора: по радиусу 7 - 0"» с наклоном вперед 7 <...> с наклоном лопасти назад, при котором обеспечивае­ тся максимальная движущая сила по лопасти . <...> D - - 1000 мм; б) диаметр барабана ротора d = 300 мм; в) число лопастей z = 8; г) шаг винтовой лопасти

Предпросмотр: ИЗЫСКАНИЕ И ИССЛЕДОВАНИЕ РОТАЦИОННОГО РАБОЧЕГО ОРГАНА ДЛЯ АКТИВНОГО РЫХЛЕНИЯ И СЕПАРАЦИИ ПОЧВ В КАРТОФЕЛЕУБОРОЧНЫХ МАШИНАХ.pdf (0,0 Мб)

13

В статье приведены результаты экспериментальных исследований по изучению процесса измельчения клинкера в пресс-валковом измельчителе и в шаровой мельнице, оснащенной энергообменными устройствами. Определены конструкции энергообменных устройств, позволяющие создавать эффективное силовое воздействие мелющих тел на измельчаемый материал.

В этой связи были проведены исследования по изучению влияния взаимного расположения ЭУ, режимов работы <...> Рабочие поверхности эллипсного сегмента и лопасти двойного действия при этом параллельны между собой, <...> измельчитель и шаровая мельница, оснащенная энергообменными устройствами: 1 – ПВИ; 2 – барабан; 3 – лопасть <...> Романович Из графической зависимости Q, N, q = f(ξ, ϕ 2) (рис. 4) установлено, что взаимное расположение <...>лопасти двойного действия и эллипсного сегмента в барабане мельницы оказывает существенное влияние на

14

Общая ихтиология практикум

В практикуме изложены лабораторные работы по изучению внешних признаков, формы тела, плавников, чешуи, мускулатуры рыб; их измерению и анатомическому вскрытию. При этом особое внимание уделяется положениям, способствующим глубокому изучению внешних признаков, имеющих систематическое значение и отражающих исключительную приспособленность различных видов рыб к условиям обитания.

Длина верхней и нижней лопастей хвостового плавника (С) – длина наибольших лучей верней и нижней лопастей <...> Рисунки: «Различные формы рта», «Размеры рта рыбы», «Расположение глаз», «Расположение ноздрей у рыб» <...> Такое расположение называется югулярным, и характерно оно для большеголовых рыб с компактным расположением <...>) верхняя лопасть короче (летучие рыбы, чехонь), при изобатном (изоцеркальном) обе лопасти имеют одинаковую <...> Рисунок 23 – Схема расположения лопастей хвостового плавника относительно зоны вихрей и слоя трения при

Предпросмотр: Общая ихтиология.pdf (0,2 Мб)

15

приведены технические характеристики и примеры использования некоторых видов соединений деревянных конструкций, получивших развитие за последнее столетие. Дан анализ достоинств и недостатков соединителей типа кольцевых, тавровых и дисковых шпонок, когтевых и вклеиваемых шайб, клеестальных волнистых зубчатых шпонок. Приводятся сортаменты и значения несущей способности некоторых соединителей

Повышенные требования к точности изготовления, качеству и влажности древесины. кольцевая шпонка с лопастями <...>лопастями . <...> Эти лопасти представляют собой куски полосовой стали с длиной, равной примерно тройному диаметру кольца <...> Шпонка состоит из металлической ленты с выштампованными в ней зубьями, расположенными несимметрично. <...> Шпонка снабжена зубьями и шипами, расположенными соответственно на впадинах и гребнях со стороны Copyright

16

Ветроэнергетические установки и перспективы их использования в Арктической зоне РФ: учеб. пособие

Обоснована актуальность развития ветроэнергетики в России, в том числе в ее Арктической зоне. Обобщены данные о ветроэнергетических установках (ВЭУ) и энергии ветра, приведена классификация ВЭУ и информация об используемых аэродинамических профилях. Представлена методика оценки ветроэнергетического потенциала и пример ее практической реализации для Соловецкого архипелага. Рассмотрены вопросы проектирования ветропарков с помощью Windsim, а также влияния ВЭУ на окружающую среду. Представлено состояние и перспективы развития ветроэнергетики в Архангельской области и Ненецком автономном округе. Приведены исходные данные для выполнения индивидуальных заданий.

исторически сложившихся систем энергоснабжения, повышения энергетической безопасности районов и потребителей, расположенных <...> Вращающий момент создается также подъемной силой двух вертикально расположенных лопастей с аэродинамическим <...>лопасть вращается в турбулизированном потоке, возмущенном предыдущими лопастями . <...> самым основные эстетические запросы; – проведение компьютерного моделирования с различными вариантами расположения <...> Однако при расположении ветроустановки на расстоянии 300 м от места постоянного пребывания людей уровень

Предпросмотр: Ветроэнергетические установки и перспективы их использования в Арктической зоне РФ учеб. пособие.pdf (1,3 Мб)

17

ИССЛЕДОВАНИЕ ПРОЦЕССА СМЕШИВАНИЯ В ДВУХВАЛЬНОМ ГОРИЗОНТАЛЬНОМ КОРМОСМЕСИТЕЛЕ ПРИ ПРИГОТОВЛЕНИИ СМЕСИ ВЛАЖНЫХ КОРМОВ АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА ТЕХНИЧЕСКИХ НАУК

АЗЕРБАЙДЖАНСКИЙ СЕЛЬСКОХОЗЯЙСТВЕННЫЙ ИНСТИТУТ ИМЕН

Задачи: а) исследовать физико-механические свойстве влажных корковых смесей; б) выявить основные закономерности распределения различных компонентов во влажных кормовых смесях; в) выявить факторы процесса смешивания, влияющие на расход анергии; г) установить оптимальные параметры двухзального лопастного кормосмесителя непрерывного действия, обеспечивающие аффективное смешивание.

Мм; R наружный радиус лопасти , ші ; Z расстояние от нижнего кряя лопасти до оси лопаст ­ ного вала, <...> при расположении лопастей под углом ot » 10, 20, 35, 45 " и 60° по отношению к оси вала» 3) От типа <...> и формы лопастей расход мощности изучалоя на 3 конструктивной форме и размеров лопастей . " ".*) От „ <...> от ширины лопасти и сог­ ласно полученных экспериментальных данных определена опти­ мальная ширина лопасти <...> ширине лопасти .

Предпросмотр: ИССЛЕДОВАНИЕ ПРОЦЕССА СМЕШИВАНИЯ В ДВУХВАЛЬНОМ ГОРИЗОНТАЛЬНОМ КОРМОСМЕСИТЕЛЕ ПРИ ПРИГОТОВЛЕНИИ СМЕСИ ВЛАЖНЫХ КОРМОВ.pdf (0,0 Мб)

18

РОЛЬ ЛЕКСИКО-ГРАММАТИЧЕСКИХ ТРАНСФОРМАЦИЙ ПРИ ПЕРЕВОДЕ ТЕХНИЧЕСКОГО ТЕКСТА

ФГБОУ ВПО "ИГЛУ"

Цель работы – определить, с какими трудностями сталкивается переводчик в работе с техническими текстами на испанском языке, и выявить методы решения переводческих проблем.

<...> прогибом лопасти при вращении винта. <...> На рис.2.6 представлены различные способы расположения лопастей несущего винта. <...> вращения лопасти во втулке несущего винта. <...> Однако при взмахе лопасти изменяется расстояние между центром тяжести лопасти и центром тяжести самого

Предпросмотр: РОЛЬ ЛЕКСИКО-ГРАММАТИЧЕСКИХ ТРАНСФОРМАЦИЙ ПРИ ПЕРЕВОДЕ ТЕХНИЧЕСКОГО ТЕКСТА.pdf (1,1 Мб)

19

№10 [Изобретательство, 2010]

Теория и практика создания изобретений и оформление прав на изобретения, информация о наиболее важных изобретениях, нормативные акты, судебные решения.

Расположенными по винтовой линии (рис. 3). <...> Вследствие расположения лопастей по винтовой линии происходит вращение протона при его взаимодействии <...> Электрон из-за фигурной своей формы в виде скрученной лопасти занимает на протоне на концах его лопастей <...> X. № 10. 2010 г. 38 к гребню одной из его лопастей . <...> X. № 10. 2010 г. 39 между собой их лопасти .

Предпросмотр: Изобретательство №10 2010.pdf (0,2 Мб)

20

№5 [Гуманитарные и социальные науки, 2016]

Научный журнал «Гуманитарные и социальные науки» является сетевым изданием, публикует статьи, сообщения, рецензии и другие материалы образовательного, научного, гуманитарного, социально-экономического и культурно-просветительского характера и предоставляет возможность преподавателям, докторантам, аспирантам, практическим работникам представить результаты своих научных исследований на рассмотрение максимально широкой аудитории.

Расположение членов предложения – детерминантов, подлежащего, сказуемого – внутри темы является относительно <...> науки 2016. № 5 105 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» В приведенном примере расположение <...>Расположение в составе темы компонента глагольного сказуемого и других членов предложения (подлежащего <...> крылатая или с крылом: волосы стягиваются сдерихой на затылке, сорока прикрепляется сзади крыльями, лопастями <...> "дружественная зона" – "расположение своих войск").

Предпросмотр: Гуманитарные и социальные науки №5 2016.pdf (0,4 Мб)

21

№3 [Вертолетная индустрия, 2011]

Журнал «ВЕРТОЛЕТНАЯ ИНДУСТРИЯ» - это компетентный анализ российской вертолетной индустрии. Это издание, отвечающее интересам руководителей предприятий российской авиации. Это респектабельный журнал, рассчитанный на всех представителей бизнес-авиации. Журнал издается для организаций, предоставляющих услуги в вертолетной и самолетной отраслях, в бизнес-авиации, для представительств иностранных компаний, авиационных холдингов по всей России и владельцев частных вертолетов. Журнал издается АССОЦИАЦИЕЙ ВЕРТОЛЕТНОЙ ИНДУСТРИИ (АВИ), первой в России организацией, объединившей в себе все основные структуры вертолетной отрасли, существующие на сегодняшний день в России.

накладки, через них в центр лопасти монтируется винтовая колонка. <...> Единственное место, которое не разрешалось посещать, это контрольно-испытательная станция, расположенная <...> Топливные баки на машинах подключаются к 7-тонной цистерне с топливом, расположенной за защитной бетонной <...> В России огромные территории и большие объемы природных ресурсов, расположенных в областях, куда сложно <...> с неравномерным расположением лопастей делают вертолет EC135 самым тихим вертолетом своего класса.

Предпросмотр: Вертолетная индустрия №3 2011.pdf (0,3 Мб)

22

Аборигенные, стародавние сорта, произрастающие в различных регионах возделывания винограда, - важная часть мирового генофонда культуры. Многие аборигенные донские сорта винограда (Vitis vinifera L.) представляют значительную ценность для возделывания и использования в селекционной работе. Среди сортов Дона выделяют как близкие по основным признакам группы, так и более отдаленные. Основные признаки листьев сортов винограда - важнейший ампелографический признак. Исследования ДНК - наиболее информативный метод анализа генотипов растений. Микросателлитные маркеры широко используются для генотипирования сортов и подвоев винограда, а также успешно применяются при изучении происхождения сортов и анализа их родословных. Мы провели оценку родства ряда донских сортов по результатам микросателлитного генотипирования. Целью настоящей работы было изучение генетического сходства аборигенных донских сортов на основе ДНКанализа и сопоставление полученных результатов с данными анализа основных признаков сформировавшегося листа, а также выводами других авторов. Исследования проводили на 16 сортах, произрастающих в коллекции Всероссийского НИИ виноградарства и виноделия им. Я.И. Потапенко (г. Новочеркасск) и в Российской ампелографической коллекции (г. Анапа). Все изученные сорта были описаны по основным ампелографическим признакам. В работе применяли полимеразную цепную реакцию с разделением ее продуктов посредством электрофореза. ДНК выделяли из молодых листьев апикальной части побегов 4-5 типичных кустов сорта. Использовали шесть SSR-маркеров, рекомендованных как основные для фингерпринтинга V. vinifera. Контролем служили сорта Шардоне и Каберне-Совиньон, аллельный состав которых по изучаемым SSR-локусам известен. Матрицу генетических дистанций строили с использованием коэффициентов (индексов) подобия по M. Nei и W. Li. Кластерный анализ на основании данных SSR-генотипирования выполняли методом попарного невзвешенного кластирования с арифметическим усреднением (UPGMA). Проводили графическое построение дендрограмм. Данные по морфологическим признакам листьев и результаты SSR-генотипирования анализировали методом главных координат (PCA). С помощью автоматического генетического анализатора ABI Prism 3130 («Applied Biosystems», США) были получены ДНК-профили местных донских сортов винограда по микросателлитным локусам VVMD5, VVMD7, VVMD27, VVS2, VrZAG62 и VrZAG79. В генотипах исследуемых донских сортов было определено шесть (по локусам VVS2, VVMD5, VVMD7, VrZAG62) и семь (по локусам VVMD27, VrZAG79) аллелей на локус. Кластерный анализ позволил разделить сорта на две основные ветви: в одну вошли Сибирьковый, Пухляковский белый, Сиволистный, Пухляковский черный, Косоротовский и Кукановский (все они относятся к группе естественных сеянцев Пухляковского белого), в другой оказались Безымянный донской, Плечистик обоеполый, Старый горюн, Цимлянский белый, Цимлянский черный, Цимладар, Плечистик, Сыпун черный, Махроватчик и Бессергеневский ¹ 7. Интересно, что во второй ветви выделились три подгруппы. Одна включала сорта Безымянный донской, Плечистик обоеполый, Цимлянский белый, Цимлянский черный, Цимладар, Плечистик, Сыпун черный (группа цимлянских сортов), в другую вошли Бессергеневский ¹ 7 (предположительно сеянец Пухляковского белого) и Старый горюн (группа цимлянских сортов); отдельно выделился сорт Махроватчик (считается сеянцем сорта Кокур белый). В пространстве главных координат нами не было обнаружено распределения сортов по основным признакам листьев в соответствии с их предполагаемым происхождением. По результатам SSR-анализа большинство сортов оказались распределены в соответствии с ранее сделанными выводами об их происхождении. Таким образом, наиболее информативной может считаться оценка коллекций, стародавних сортов, селекционного материала и интродуцируемых образцов по комплексу ампелографических признаков и SSR-маркерам. Ключевые слова: аборигенный генофонд, SSR-маркеры, ампелографические признаки листа, Vitis vinifera L., донские сорта винограда, генетическое сходство.

верхушечного зубчика к его ширине, 078-2 - отношение длины бокового зубчика к его ширине, 068 - число лопастей <...> , 067 - форма пластинки, 065 - размер пластинки, 082 - расположение лопастей верхних боковых вырезок, <...> 079 - расположение лопастей черешковой выемки, 084 - паутинистое опушение между главными жилками на

23

№8 [Моделист-конструктор, 2015]

Популярный ежемесячный научно-технический журнал. Издается с августа 1962 года в Москве. Доброе напутствие новому изданию дали известные авиаконструкторы А.Туполев, С.Ильюшин, космонавт Ю.Гагарин. С тех пор журнал вот уже свыше сорока лет освещает вопросы научно-технического творчества, самодеятельного конструирования, рассказывает об истории отечественной и зарубежной техники. Среди его авторов наряду со знаменитыми изобретателями и конструкторами, чемпионами технических видов спорта - большая армия разносторонних умельцев, любителей техники, ее истории. «Моделист-конструктор» - единственный в стране журнал, в каждом номере которого печатаются чертежи, схемы и описания самых разных самодельных конструкций. Редакция одну из главных задач видит в том, чтобы помочь каждому читателю, какого бы возраста он ни был, сделаться мастером на все руки, не только знатоком техники, но и разносторонним умельцем, способным изготовить своими руками все необходимое для труда и отдыха. ПЕРЕДАЧА ПОДПИСНЫХ НОМЕРОВ ОСУЩЕСТВЛЯЕТСЯ С ЗАДЕРЖКОЙ В 12 МЕСЯЦЕВ!!!

На них закреплены штоки (11) с небольшими «плавниками»-лопастями (12). <...> Выкройка лопасти и крепление её Рис. 5. <...> Первые лыжи я изготовил с нижним расположением лопастей . <...> А с боковым расположением лопастей можно ходить как по чистым, так и по заросшим водоёмам. <...>Расположение волокон – вдоль наибольшего размера.

Предпросмотр: Моделист-конструктор №8 2015.pdf (0,1 Мб)

24

№6 [Авиаколлекция, 2014]

Приложение к журналу «Моделист-конструктор», издается с июля 2003 года. Специализированный журнал для любителей истории авиации и авиамоделистов. Каждый выпуск - это мини-монография об отечественной или иностранной конструкции летательных аппаратах. Каждый выпуск содержит информацию об истории создания самолета или вертолета, его серийном производстве, модификациях, эксплуатации, боевом применении и окраске. Приводятся краткое техническое описание и чертежи машины. А также большое количество фотографий, в том числе фотоснимки узлов и агрегатов. ПЕРЕДАЧА ПОДПИСНЫХ НОМЕРОВ ОСУЩЕСТВЛЯЕТСЯ С ЗАДЕРЖКОЙ В 12 МЕСЯЦЕВ!!!

Пилот сидел в кресле, расположенном в диаметральной плоскости, по бокам и чуть сзади размещались места <...> Взаимное расположение лопастей и отсутствие общей разбалансировки винта гарантировались тремя тросиками <...> К стрингеру приклеены триммеры для доводки лопасти . <...> Носок лопасти окован тонкой полоской нержавеющей стали. <...> В передней части кабины имеются три расположенных рядом кресла: для лётчиков (два крайних) и пассажира

Предпросмотр: Авиаколлекция №6 2014.pdf (0,4 Мб)

25

Основы конструирования и проектирования вибрационных смесителей [монография]

В монографии на основе известных конструкций и результатов исследований предложены принципы проектирования вибрационных смесителей, обеспечивающих приготовление перспективных строительных материалов с необходимыми физико-химическими характеристиками.

;  угол наклона лопасти к горизонту. <...> Бетоносмесители лопастные : N k FR   , где F фронтальная площадь лопасти ; R радиус установки лопасти <...> ;  угловая скорость лопасти ; k коэффициент сопротивления смеси вращению лопастей . <...> и масса замеса; z число лопастей ; R r, соответственно радиусы конца и начала лопасти ;  число оборотов <...> , L ширина лопасти , h зазор между кромкой лопасти и стенкой камеры смешивания, V объем смеси.

Предпросмотр: osnovy-konstruirovanija.pdf (0,1 Мб)

26

№1 [Научно-технический вестник Брянского государственного университета, 2018]

Журнал специализируется на публикации научных статей, содержащих новые научные результаты в области теоретических и прикладных исследований и соответствующих по тематике следующим отраслям науки из Номенклатуры специальностей научных работников: 02 – химические науки; 05 – технические науки; 25 – науки о Земле.

лопасти 32 при помощи фиксаторов 33 и стопорных винтов 34. <...> Для герметизации зазоров между сопрягаемыми поверхностями лопастей и внутренней поверхности обечайки <...> в каждой лопасти выполняется паз 37 для установки уплотнительного элемента 38. <...> с количеством установленных перегородок (лопастей ). <...> Использование различных схем расположения проходов склада тарно-штучных грузов / Д.И.

Предпросмотр: Научно-технический вестник Брянского государственного университета №1 2018.pdf (1,9 Мб)

27

Системы охлаждения поршневых двигателей внутреннего сгорания учеб. пособие

Издательство СГАУ

Системы охлаждения поршневых двигателей внутреннего сгорания. Используемые программы: Adobe Acrobat. Труды сотрудников СГАУ (электрон. версия)

Лопасти могут быть поворотными. <...> трубок под углом к воздуш­ ному потоку, 2 шахматное расположение трубок, 3 рядное расположение трубок <...> На работу" вентилятора влияет его расположение в кожухе по глубине. <...> Но расположение его лопастей должно быть более точным, так как из-за возможного несовпадения векторов <...> с лопастями , отогнутыми назад.

Предпросмотр: Системы охлаждения поршневых двигателей внутреннего сгорания.pdf (0,8 Мб)

28

Статья «Лопастное долото с усиленным периферийным вооружением» посвящена обоснованию ряда важнейших параметров лопастного долота режуще-скалывающего принципа работы – повышение работоспособности периферийного и центрального вооружения долота

При этом обязательным условием является расположение этих элементов на различных уровнях относительно <...> Практика отработки лопастных долот свидетельствует, что характер износа вооружения, расположенного на <...> Объемная работа разрушения периферийных резцов гораздо больше объемной работы резцов, расположенных на <...>Расположение спаренных резцов на периферии лопасти Для обеспечения возможности размещения на периферийной <...>лопасти .

29

Осевые и центробежные насосы тепловых электрических станций учеб. пособие

М.: ФЛИНТА

В пособии рассматриваются принципы действия, энергетические характеристики и конструкции осевых и центробежных насосов, а также их элементов. Представлена классификация насосов и особенности их работы в составе насосных установок и сети. Рассмотрены характерные повреждения элементов насосов, возникающие в процессе эксплуатации. Приведены методики определения гидравлических и геометрических параметров проектируемых насосов и особенности подбора серийных насосов для требуемых условий.

<...> <...> и вертикальным расположением вала. <...> рабочего колеса; ОП – с поворотными лопастями рабочего колеса; В – с вертикальным расположением вала <...>Расположение лап здесь нижнее.

Предпросмотр: Осевые и центробежные насосы ТЭС.pdf (0,7 Мб)

30

Предлагается конструктивно-технологический способ повышения износостойкости и долговечности лопастей смесителя, заключающийся в наплавке износостойких валиков, расположенных по шевронной схеме, для формирования на поверхности трения защитного слоя из технологической массы, обеспечивающего «теневой эффект» – экранирование рабочей поверхности лопастей от воздействия абразивных частиц.

смесителя, заключающийся в наплавке износостойких валиков, расположенных по шевронной схеме, для формирования <...> Схема расположения наплавленных валиков предусматривает реализацию так называемого теневого эффекта [ <...> ; 4 – держатель лопасти ; 5 – верхняя смесительная лопасть ; 6 – донная смесительная лопасть Ю.И. <...>расположением валиков, шириной и высотой валиков, а также соответствующим шагом наплавления. <...> валиков, расположенных по шевронной схеме, может повысить долговечность лопастей в 1,3–1,5 раза по сравнению

31

Ветроустановки учеб. пособие

М.: Изд-во МГТУ им. Н.Э. Баумана

Рассмотрены принципы работы и устройство ветроустановок различного типа, а также особенности их регулирования (управления).

В результате при расположении крупных ВЭУ на расстоянии не ближе 250 м от жилых домов уровень шума не <...> на направление ветра (вид сверху): а – при помощи хвостового оперения; б – при помощи виндроз; в – расположением <...> Они представляют собой небольшие ветроколеса, расположенные перпендикулярно к плоскости вращения основного <...> Ориентация при помощи расположения ветродвигателя за вертикальной осью его поворота основана на том, <...> Механизм поворота может управляться центробежным регулятором, расположенным на основном вертикальном

Предпросмотр: Ветроустановки.pdf (0,2 Мб)

32

Теоретические и экспериментальные исследования смешивания сухих компонентов и микродобавок в лопастном смесителе. Теория, конструкция, расчет монография

РИО ПГСХА

В монографии обобщены результаты теоретических и экспериментальных исследований процесса смешивания сухих компонентов в смесителе микродобавок. Приведены показатели, характеризующие качество приготавливаемой смеси и энергоемкости процесса перемешивания. Разработана новая конструктивная схема смесителя микродобавок, и обоснованы оптимальные параметры конструкции смесителя по минимуму энергоемкости перемешивания.

Через приемную горловину, расположенную под выгрузной течкой 9, компонент поступает в загрузочный шнековый <...> Компоненты загружают при вертикальном расположении корпуса смесителя через одно из отверстий наружных <...> Полученная смесь выгружается через нижнее отверстие корпуса при вертикальном расположении микросмесителя <...> Сами смесительные устройства выполнены в виде горизонтально расположенных валов с лопатками. <...> показали наличие двух зон предполагаемого расположения минимума энергоемкости.

Предпросмотр: ТЕОРЕТИЧЕСКИЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СМЕШИВАНИЯ СУХИХ КОМПОНЕНТОВ И МИКРОДОБАВОК В ЛОПАСТНОМ СМЕСИТЕЛЕ.pdf (0,6 Мб)

33

Дорожно-строительные машины и комплексы

Изложены основы теории и проектирования, особенности расчета и конструкции машин для строительства и содержания дорог, аэродромов и городского хозяйства, восстановления и ремонта дорожных покрытий

Такому требованию более или менее удовлетворяет в» товое расположение лопастей . <...> В двухвальных лотковых смесителях вращающиеся в противоположных направлениях валы с лопастями , расположенными <...> Высота лопастей для различных точек лопасти по ее длине различна. <...>лопастей , м). <...>лопасти , м; у угол между плоскостью лопасти и осью вала; RH, Re наружный и внутренний радиусы лопасти

Предпросмотр: Дорожно-строительные машины и комплексы.pdf (0,1 Мб)

34

Анализируются отказы и энергетические характеристики поворотно-лопастных турбин, давно отработавших нормативный срок службы. Обосновывается целесообразность замены морально устаревших и физически изношенных поворотно-лопастных рабочих колес на новые радиально-осевые колеса

Подземная УстьХантайская ГЭС с расположением машинного зала на глубине 47 м относится к такому случаю <...> Схема расположения повреждений лопастей осевой турбины Рис. 2. <...> zНА – число лопаток направляющего аппарата, fоб – частота вращения турбины), что вызвано близостью расположения <...> Фактический зазор «лопасть - камера» турбин Усть-Хантайской ГЭС Агрегат Номер лопасти турбины Средний <...> Выбор параметров нового оборудования В климатических условиях расположения подземной Усть-Хантайской

35

Определитель деревьев и кустарников Европейской России, Крыма и Кавказа по листьям и цветам с многочисл. рис. в тексте

Березовский В. А., Ильин А. А., Карбасников Н. П.Орлов А.В.

Определитель деревьев и кустарников Европейской России, Крыма и Кавказа по листьям и цветам

лопасть . <...> Дерево съ кольчато-расположенными сучьями. <...> Н * С п Р а в ™ ° попере-шо-расположенные , * G m e l U 1 r ? <...> Почки и листья двурядно-спиралъно расположенные . <...> Ночки и листья супротивно-расположенные .

Предпросмотр: Определитель деревьев и кустарников Европейской России, Крыма и Кавказа по листьям и цветам.pdf (0,1 Мб)

36

Оборудование перерабатывающих производств практикум

РИЦ СГСХА

В практикуме рассмотрены машинно-аппаратурные схемы линий и основное оборудование для производства муки, крупы, комбикормов, хлебобулочных изделий и растительных масел, а также технологическое оборудование для переработки продукции животноводства.

Взаимное расположение рифлей. <...> В этом случае применяют расположение рифлей «спинка по спинке». <...>лопастью , совершающей криволинейное плоское движение; г – с месильной лопастью , совершающей криволинейное <...>Лопасть совершает планетарное движение. <...> , спаренными Z-образными цилиндрическими лопастями (ТМ-63, РЗ-ХТИ-3), с месильной лопастью в виде многоугольного

Предпросмотр: Оборудование перерабатывающих производств.pdf (2,2 Мб)

37

Расчет параметров вертолета на этапе предварительного проектирования учеб. пособие

В учебном пособии изложены методы расчета основных параметров вертолета на стадии эскизного проекта: расчет аэродинамического сопротивления, взлетной массы, массы агрегатов, мощности двигательной установки, вопросы компоновки и центровки.

По углу установки φ07 сечения лопасти , расположенного на расчетном радиусе r07, определяется общий шаг <...> Геометрическая крутка лопасти , определяющая угловое положение ряда сечений лопасти , расположенных по <...> Для сечений, расположенных ближе к концу лопасти , рекомендуется применять скоростные профили типа ЦАГИ <...> При этом сечения лопасти , расположенные ближе к оси вращения и имеющие малые окружные скорости работают <...> Крутка лопасти представляется в виде ряда углов φi установки профилей сечений, расположенных на различных

Предпросмотр: Расчет параметров вертолета на этапе предварительного проектирования.pdf (0,2 Мб)

38

Статья «Лопастное долото, работающее в режиме бокового сдвига горной породы» посвящена обоснованию ряда важнейших параметров лопастного долота режуще-скалывающего принципа работы

опыта эксплуатации лопастных долот определились следующие основные требования к их конструкции: 1) расположение <...> При этом образуется дополнительная плоскость обнажения для рядом расположенного резца. <...> рабочие элементы лопасти могли бы сваливать разрушаемую породу. <...> Но при таком варианте лопасти периферийный резец должен опережать рядом расположенный резец на некоторую <...> Такая схема расположения периферийного резца может применяться только при разбуривании мягких пород,

39

Механическое оборудование и технологические комплексы учеб. пособие

Изложены основные теоретические сведения, основы расчета и проектирования машин и оборудования; дано описание конструкций машин и оборудования, принципа их действия; предложен выбор и расчет технологических линий и комплексов оборудования.

Блок обычно имеет семь расположенных по окружности цилиндров. <...>Лопасть 7 предназначена для очистки стенок корпуса, а лопасть 4 - для очистки обечайки внутреннего стакана <...> К траверсе прикреплены лопасть 21, подгребающая смесь под лопасти , и лопасти 24 и 23, очищающие стенки <...> ; α - угол между плоскостью лопасти и осью вала; δ - число лопастей в пределах одного шага винта. <...> Опишите схему расположения смесителей в смесительных отделениях. 10. по бокам зонтика, имеют округлый контур.

Учебное пособие предназначено для студентов по профилю подготовки «Технология хлебопекарного, макаронного и кондитерского производства» всех форм обучения при изучении дисциплины «Технологическое оборудование предприятий отрасли», а также в ходе курсового и дипломного проектирования.

Расположенных параллельно в горизонтальной плоскости. <...> Внутри камеры на горизонтальном валу укреплены четыре лопасти , расположенные одна относительно другой <...> Необходимое время обработки на соответствующей скорости устанавливается при помощи реле, расположенного <...>лопасти 10. <...> 2, расположенному в дне корыта.

Предпросмотр: Тестомесильные машины и тестоприготовительные агрегаты.pdf (0,5 Мб)

43

Насосы, вентиляторы, компрессоры. Расчет и подбор нагнетателей метод. указания к выполнению курсовой работы по дисциплине «Насосы, вентиляторы, компрессоры»

ФГБОУ ВПО "Саратовский ГАУ им. Н. И. Вавилова"

Методическое указание содержит ряд теоретических материалов, по теме «Насосы, вентиляторы, компрессоры». Здесь рассмотрены основные вопросы расчета и подбора компрессоров необходимого давления и мощности. Дан подробный анализ расчета насосных систем, в частности расчет центробежного насоса, его рабочего колеса, который позволит студентам самостоятельно выбрать и рассчитать рабочее колесо и представить его в графической форме. В методическом указании предлагаются варианты для выполнения курсовой работы.

: ширина канала в меридианном сечении 1b , расположение входной кромки лопасти и радиус ее средней точки <...> r1, а также входной угол лопасти β1. <...> , которая чаще всего выбирается равной скорости ύ0, 11 1 1 2 mvr Q b     (13) Расположение входных <...> канала mvr Q b    2 (27) Найдя ширину канала b в функции длины средней линии S, из ряда точек, расположенных <...> Профилирование лопасти .

Предпросмотр: Насосы, вентиляторы, компрессоры. Расчет и подбор нагнетателей. Методические указания к выполнению курсовой работы по дисциплине «Насосы, вентиляторы, компрессоры».pdf (0,2 Мб)

44

Разработан метод выбора рационального угла наклона шнековой лопасти вертикального винтового конвейера, позволяющий учитывать физико-механические свойства и геометрические характеристики поперечного сечения потока транспортируемого материала, а также процессы, протекающие на поверхностях контактов материала с рабочими органами конвейера, с учетом налагаемых ограничений и критерия оптимизации

. № 5 55 УДК 621. 867. 1/3 (06) МЕТОД ВЫБОРА РАЦИОНАЛЬНОГО УГЛА НАКЛОНА ШНЕКОВОЙ ЛОПАСТИ ВИНТОВОГО КОНВЕЙЕРА <...> шнековой лопасти изучено мало из-за многих факторов, влияющих на эту величину. <...> Входными параметрами являются радиус лопасти R, угол подъема винтовой линии α. <...> формуле вит 0 2/Q V k   , (2) где 0 – угловая скорость шнекового вала, с –1; Vвит – объем материала, расположенного При необходимости возможно снятие усилия с ручки управления и педалей нажатием кнопки, В настоящее время проводится реконструкция гидротурбин Рыбинской ГЭС, проработавших более 60 лет. Цель реконструкции: повышение мощности, КПД и обеспечение экологичности. Реконструкция включает механический и гидравлический проекты, обоснование прочности, модельные испытания и поставку. Рабочее колесо - экологически чистое, без масла в корпусе. В статье специалистов конструкторского бюро «Гидротурбомаш» ОАО «Силовые машины» отражены этапы реконструкции, параметры гидротурбины до и после реконструкции

<...> своими опорными поверхностями вращаются во втулках и упорных кольцах, расположенных в наружных и внутренних <...> ремонта - не менее 20 лет. для предотвращения попадания твердых частиц и воды из проточного тракта в зону расположения <...> из кавитационно-стойкой нержавеющей стали, механизма поворота лопастей , сервомотора, расположенного <...> своими опорными поверхностями вращаются во втулках и упорных кольцах, расположенных в наружных и внутренних

47

Механизация технологического процесса сепарирования молока

РИО ПГСХА

Приводятся основные сведения о проблеме, связанной с механизацией сепарирования молока. Описаны методики, оборудование и приборное обеспечение экспериментальных исследований в лабораторных и производственных условиях сепаратора-сливкоотделителя с лопастным тарелкодержателем. Осуществлено теоретическое и экспериментальное обоснование конструктивных, кинематических и технологических параметров сепаратора-сливкоотделителя с лопастным тарелкодержателем.

В таблице 1.2 представлены основные жирные кислоты молочного жира в порядке их расположения от периферии <...> Состоит из станины 17 (рисунок 1.8) с расположенными на ней указателем уровня масла 2, сливной пробкой <...> конца лопасти соответственно внутренней и наружной, м; 3R – радиус расположения оси отверстия выходного <...> угол дуги профиля лопасти –(2.39); длина профиля лопасти – (2.40). <...> ; радиуса кривизны профиля лопасти ; центрального угла дуги радиуса кривизны лопасти ; длины лопасти .

Предпросмотр: Механизация технологического процесса сепарирования молока.pdf (0,8 Мб)

48

До последнего времени разрушение крепежа крышек турбин рассматривалось только на высоконапорных радиально осевых турбинах (Саяно-Шушенская, Нурекская ГЭС). Дальнейшее изучение проблемы установило, что разрушение крепежа встречается и на поворотнолопастных турбинах. Так, при капитальном ремонте в 2011 г. агрегата УчКурганской ГЭС (номинальная мощность турбины Nт=45 МВт при расчетном напоре Hр=25,8 м) было обнаружено 26 разрушенных шпилек из 72. Большая авария с отрывом крышки ПЛ турбины (станционный номер 1) произошла 10 марта 1992 г. на ГЭС «Гранд Рэпидс» (Канада). Затоплены были и другие три агрегата. Степень разрушений на станции была весьма значительной. Только на разбор завалов в турбинном зале было затрачено более 2 млн долларов. Остановимся на этой аварии подробнее

<...> зажатость шпильки). при ослаблении крепежа вибрации крышки турбины должны быть больше вибрации рядом расположенной <...>Расположение датчиков для замера виброскоростей (а) и экспериментальная шпилька (б) Рис. 3. <...> Схема расположения датчиков для измерения виброскоростей и эскиз экспериментальной шпильки с местом установки <...> Схема расположения датчиков для измерения виброскоростей и эскиз экспериментальной шпильки с местом установки

49

Изучены конодонты из каменноугольных и нижнепермских отложений разреза Заладу, который расположен в восточной части Ирана, вблизи д. Гушкамар. Выделено около 50 конодонтовых элементов, на основании которых впервые для Ирана установлены комплексы конодонтов нижнего башкира, верхней части московского яруса, низов касимовского яруса, верхней части гжельского и основания ассельского. В едином разрезе намечено положение границы карбона и перми по появлению S. nodulinearis и S. isolatus. Определено 12 видов конодонтов, принадлежащих 4 родам, в открытой номенклатуре определено 9 форм, большинство из них описаны и изображены.

Дополнительная лопасть , расположенная с внутренней стороны, выступает за контур платформы, несет скульптуру <...> <...> Дополнительные лопасти отсутствуют. <...> , расположенную за пределами платформы параллельно осевому гребню. <...>расположенными параллельно осевому гребню.

50

Информатизация технологического оборудования судового машиностроения

Северный (Арктический) федеральный университет имени М.В. Ломоносова

Рассмотрены наиболее актуальные проблемы информатизации современного машиностроительного производства и предложены оптимальные методы и пути их решения в существующих экономических условиях. Предложенные технические решения по модернизации различного технологического оборудования позволяют придать морально устаревшему оборудованию новые технологические возможности, повысить класс точности технологического оборудования, расширить функциональные возможности станков и номенклатуру обрабатываемых изделий, снизить трудоёмкость обработки, повысить оперативность и точность контроля, повысить качество выполнения технологических операций.

Контроль за движением суппорта ведётся по сигнальным лампам, расположенным на панели пульта управления <...> Отключение копирования осуществляется нажатием кнопки Кн5, расположенной на копировальном пульте. <...> Схема расположения функциональных блоков ЦСУИ станка показана на рис. 4.9. <...> Схема расположения функциональных блоков ЦСУИ: 1 – вертикальная колонна станка; 2 – шпиндельная бабка <...> В первую очередь определяется количество и взаимное расположение точек (обCopyright ОАО «ЦКБ «БИБКОМ»

Предпросмотр: Информатизация технологического оборудования судового машиностроения.pdf (1,1 Мб)

Лопасти несущего винта вертолета надо построить так, чтобы они, создавая необходимую подъемную силу, выдерживали все возникающие на них нагрузки. И не просто выдерживали, а имели бы еще запас прочности на всякие непредвиденные случаи, которые могут встретиться в полете и при техническом обслуживании вертолета на земле (например, резкий порыв ветра, восходящий поток воздуха, резкий маневр, обледенение лопастей, неумелая раскрутка винта после запуска двигателя и т. д.).

Одним из расчетных режимов для подбора несущего винта вертолета является режим вертикального набора на любой избранной для расчета высоте. На этом режиме из-за отсутствия поступательной скорости в плоскости вращения винта потребная мощность имеет большую величину.

Зная приблизительно вес конструируемого вертолета и задаваясь величиной полезной нагрузки, которую должен будет поднимать вертолет, приступают к подбору винта. Подбор винта сводится к тому, чтобы выбрать такой диаметр винта и такое число его оборотов в минуту, при которых бы расчетный груз мог быть поднят винтом отвесно вверх с наименьшей затратой мощности.

При этом известно, что тяга несущего винта пропорциональна четвертой степени его диаметра и только второй степени числа оборотов, т. е. тяга, развиваемая несущим винтом, более зависит от диаметра, чем от числа оборотов. Поэтому заданную тягу легче получить увеличением диаметра, чем увеличением числа оборотов. Так, например, увеличив диаметр в 2 раза, получим тягу в 24 = 16 раз большую, а увеличив число оборотов в два раза, получим тягу только в 22 = 4 раза большую.

Зная мощность двигателя, который будет установлен на вертолете для приведения во вращение несущего винта, сначала подбирают диаметр несущего винта. Для этого применяют следующее соотношение:

Лопасть несущего винта работает в очень тяжелых условиях. На нее действуют аэродинамические силы, которые ее изгибают, скручивают, разрывают, стремятся оторвать от нее обшивку. Чтобы «противостоять» такому действию аэродинамических сил, лопасть должна быть достаточно прочной.

При полетах в дождь, в снег или в облаках при условиях, способствующих обледенению, работа лопасти еще более усложняется. Капли дождя, попадая на лопасть с огромным» скоростями, сбивают с нее краску. При обледенении па лопастях образуются ледяные наросты, которые искажают ее профиль, мешают ее маховому движению, утяжеляют ее. При хранении вертолета на земле на лопасть разрушающе действуют резкие изменения температуры, влажность, солнечные лучи.

Значит, лопасть должна быть не только прочной, но она еще должна быть невосприимчивой к влиянию внешней среды. Но если бы только это! Тогда лопасть можно было бы сделать цельнометаллической, покрыв ее противо-коррозийным слоем, и задача была бы решена.

Но есть еще одно требование: лопасть, кроме этого, должна быть еще и легкой. Поэтому ее изготовляют полой За основу конструкции лопасти берут металлический лонжерон, чаще всего - стальную трубу переменного сечения, площадь которого постепенно или ступенчато уменьшается от корневой части к концу лопасти.

Лонжерон, как главный продольный силовой элемент лопасти, воспринимает перерезывающие силы и изгибающий момент. В этом отношении работа лонжерона лопасти схожа с работой лонжерона самолетного крыла. Однако на лонжерон лопасти действуют в результате вращения винта еще центробежные силы, чего нет у лонжерона крыла самолета. Под действием этих сил лонжерон лопасти подвергается растяжению.

К лонжерону привариваются или приклепываются стальные фланцы для крепления поперечного силового набора - нервюр лопасти. Каждая нервюра, которая может быть металлической или деревянной, состоит из стенок и полок. К металлическим полкам приклеивается или приваривается металлическая обшивка, а к деревянным полкам приклеивается фанерная или пришивается полотняная обшивка или к носку приклеивается фанерная обшивка, а к хвостику пришивается полотняная, как показано. В носовой части профиля полки нервюр крепятся к переднему стрингеру, а в хвостовой части - к заднему стрингеру. Стрингеры служат вспомогательными продольными силовыми элементами.

Обшивка, покрывающая полки нервюр, образует собой профиль лопасти в любом ее сечении. Наиболее легкой является полотняная обшивка. Однако во избежание искажения профиля в результате прогиба полотняной обшивки на участках между нервюрами, нервюры лопасти приходится ставить очень часто, примерно через 5-6 см одна от другой, что утяжеляет лопасть. Поверхность лопасти с плохо натянутой полотняной обшивкой выглядит ребристой и обладает низкими аэродинамическими качествами, так как ее лобовое сопротивление велико. В процессе одного оборота профиль такой лопасти меняется, что способствует появлению дополнительной вибрации вертолета. Поэтому полотняная обшивка пропитывается аэролаком, который по мере своего высыхания сильно натягивает полотно.

При изготовлении обшивки из фанеры жесткость лопасти увеличивается и расстояние между нервюрами может быть увеличено в 2,5 раза по сравнению с лопастями, обтянутыми полотном. Для того чтобы уменьшить сопротивление, поверхность фанеры гладко обрабатывается и полируется.

Хороших аэродинамических форм и большой прочности можно добиться, если изготовить полую цельнометаллическую лопасть. Трудность ее производства состоит в изготовлении переменного по сечению лонжерона, который образует носовую часть профиля. Хвостовая часть профиля лопасти изготовляется из листовой металлической обшивки, которую передними кромками заподлицо приваривают к лонжерону, а задние кромки склепывают между собой.

Профиль лопасти винта вертолета выбирается с таким расчетом, чтобы при увеличении угла атаки срыв обтекания возникал на возможно больших углах атаки. Это необходимо для того, чтобы избежать срыва обтекания на отступающей лопасти, где углы атаки особенно велики. Кроме того, во избежание вибраций профиль надо подобрать такой, у которого бы при изменении угла атаки не менялось положение центра давления.

Очень важным фактором для прочности и работы лопасти является взаимное расположение центра давления и центра тяжести профиля. Дело в том, что при совместном действии изгиба и кручения, лопасть подвержена самовозбуждающейся вибрации, т. е. вибрации со все возрастающей амплитудой (флаттеру). Во избежание вибрации лопасть должна балансироваться относительно хорды, т. е. должно быть обеспечено такое положение центра тяжести на хорде, которое исключало бы самовозрастание вибрации. Задача балансировки сводится к тому, чтобы у построенной лопасти центр тяжести профиля находился впереди центра давления.

Продолжая рассматривать тяжелые условия работы лопасти несущего винта, необходимо отметить, что повреждение деревянной обшивки лопасти каплями дождя может быть предотвращено, если вдоль ее передней кромки укрепить листовую металлическую окантовку.

Борьба же с обледенением лопастей представляет собой более сложную задачу. Если такие виды обледенения в полете, как иней и изморозь, большой опасности для вертолета не представляют, то стекловидный лед, постепенно и незаметно, но чрезвычайно прочно наращивающийся на лопасти, приводит к утяжелению лопасти, искажению ее профиля и, в конечном счете, к уменьшению подъемной силы, что приводит к резкой потере управляемости и устойчивости вертолета.

Существовавшая одно время теория о том, что лед вследствие машущего движения лопастей будет в полете скалываться, оказалась несостоятельной. Обледенение лопасти начинается раньше всего у корневой части, где изгиб лопасти при ее машущем движении невелик. В дальнейшем слой льда начинает распространяться все дальше к концу лопасти, постепенно сходя на нет. Известны случаи, когда толщина льда у корневой части достигала 6 мм, а у конца лопасти - 2 мм.

Предотвратить обледенение возможно двумя путями.

Первый путь - это тщательное изучение прогноза погоды в районе полетов, обход встретившихся по пути облаков и изменение высоты полета с целью выхода из воны обледенения, прекращение полета и т. д.

Второй путь - это оборудование лопастей противо-обледенительными устройствами.

Известен целый рад этих устройств для лопастей вертолета. Для удаления льда с лопастей несущего винта может

быть применен спиртовой противообледенитель, который разбрызгивает на передней кромке винта спирт. Последний, смешиваясь с водой, понижает температуру ее замерзания и препятствует образованию льда.

Скалывание льда с лопастей винта может быть осуществлено воздухом, который нагнетается в резиновую камеру, проложенную вдоль передней кромки несущего винта. Раздувающаяся камера надкалывает ледяную корку, отдельные куски которой затем сметаются с лопастей винта встречным потоком воздуха.

Если передняя кромка лопасти винта сделана из металла, то ее можно подогревать или электричеством, или теплым воздухом, пропускаемым через трубопровод, проложенный вдоль передней кромки несущего винта.

Будущее покажет, какой из этих способов найдет себе более широкое применение.

Для аэродинамических характеристик несущего винта большое значение имеют число лопастей несущего винта, и удельная нагрузка на ометаемую винтом площадь. Теоретически число лопастей винта может быть любым, от одной бесконечно большого их числа, настолько большого, что они в конечном счете сливаются в спиральную поверхность, как это предполагалось в проекте Леонардо да Винчи или в вертолете-велосипеде И. Быкова.

Однако есть какое-то наиболее выгодное число лопастей. Число лопастей не должно быть меньше трех, так как при двух лопастях возникают большие неуравновешенные силы и колебания тяги винта. Показано изменение тяги несущего винта около его среднего значения в течение одного оборота винта у однолопастного и двухлопастного винтов. Трехлопастной винт уже практически сохраняет среднее значение тяги в течение всего оборота.

Число лопастей винта не должно быть также очень большим, так как в этом случае каждая лопасть работает в потоке, возмущенном предыдущей лопастью, что снижает коэффициент полезного действия несущего винта.

Чем больше лопастей винта, тем большую часть площади ометаемого диска они занимают. В теорию несущего винта вертолета введено понятие коэффициента заполнения о, который подсчитывается как отношение суммарной площади

Для расчетного режима работы несущего винта вертолета (отвесный подъем) наивыгоднейшей величиной коэффициента заполнения является величина 0,05-0,08 (среднее значение 0,065).

Эта нагрузка является средней. Малой нагрузкой называют нагрузку в пределах 9-12 кг/м2. Вертолеты, имеющие такую нагрузку, маневренны и обладают большой крейсерской скоростью.

Вертолеты общего назначения имеют среднюю нагрузку в пределах от 12 до 20 кг/м2. И, наконец, большой нагрузкой, редко применяемой, является нагрузка от 20 до 30 кг/м2.

Дело в том, что хотя высокая удельная нагрузка на ометаемую площадь и обеспечивает большую полезную нагрузку вертолета, но при отказе двигателя такой вертолет на режиме самовращения будет снижаться быстро, что недопустимо, так как в этом случае нарушается безопасность снижения.