Схемы на то 12.5.12 5. Как подключить нагрузку к блоку управления на микросхемах

Статья о различных способах подключения нагрузки к микроконтроллерному блоку управления с помощью реле и тиристоров.

Все современное оборудование, как промышленное, так и бытовое приводится в действие электричеством. При этом всю его электрическую схему можно разделить на две большие части: устройства управления (контроллеры от английского слова CONTROL - управлять) и исполнительные механизмы.

Лет двадцать назад блоки управления выполнялись на микросхемах малой и средней степени интеграции. Это были серии микросхем К155, К561, К133, К176 и им подобные. Они называются , так как выполняют логические операции над сигналами, а сами сигналы являются цифровыми (дискретными).

В точности также, как обычные контакты: «замкнут - разомкнут». Только в этом случае эти состояния называются соответственно «логическая единица» и «логический ноль». Напряжение логической единицы на выходе микросхем находится в пределах от половины напряжения питания до его полной величины, а напряжение логического нуля у таких микросхем, как правило, 0…0,4В.

Алгоритм работы таких блоков управления осуществлялся за счет соответствующего соединения микросхем, и количество их было достаточно велико.

В настоящее время все блоки управления разрабатываются на основе . В этом случае алгоритм работы закладывается не схемным соединением отдельных элементов, а «прошитой» в микроконтроллере программой.

В связи с этим вместо нескольких десятков, а то и сотен микросхем блок управления содержит микроконтроллер и некоторое количество микросхем для взаимодействия с «внешним миром». Но, несмотря на такое усовершенствование, сигналы микроконтроллерного блока управления все те же цифровые, что и у старых микросхем.

Понятно, что мощности таких сигналов недостаточно, чтобы включить мощную лампу, двигатель, да и просто реле. В этой статье мы рассмотрим, какими способами можно подключить к микросхемам мощные нагрузки .

Самые . На рисунке 1 реле включается при помощи транзистора VT1, для этого на его базу через резистор R1 от микросхемы подается логическая единица, транзистор открывается и включает реле, которое своими контактами (на рисунке не показаны) включает нагрузку.

Каскад, показанный на рисунке, 2 работает по-другому: чтобы включить реле на выходе микросхемы должен появиться логический 0, который закроет транзистор VT3. при этом транзистор VT4 откроется и включит реле. Кнопкой SB3 можно включить реле вручную.

На обоих рисунках можно заметить, что параллельно обмоткам реле включены диоды, причем по отношению к напряжению питания в обратном (непроводящем) направлении. Их назначение погасить ЭДС самоиндукции (может в десять и более раз превышать напряжение питания) при выключении реле и защитить элементы схемы.

Если же в схеме не одно, два реле, а намного больше, то для их подключения выпускается специализированная микросхема ULN2003A , допускающая подключение до семи реле. Такая схема включения показана на рисунке 3, а на рисунке 4 внешний вид современного малогабаритного реле.

На рисунке 5 показана (вместо которых ничего не меняя в схеме, можно подключить реле). На этой схеме следует обратить внимание на транзисторный ключ, выполненный на двух транзисторах VT3, VT4. Подобное усложнение вызвано тем, что некоторые микроконтроллеры, например AT89C51, AT89C2051 на время сброса при включении в течение нескольких миллисекунд удерживают на всех выводах уровень логической 1. Если нагрузку подключить по схеме приведенной на рисунке 1, то срабатывание нагрузки произойдет сразу же при включении питания, что может быть очень нежелательным явлением.

Для того, чтобы включить нагрузку (в данном случае светодиоды оптронных тиристоров V1,V2) на базу транзистора VT3 через резистор R12 следует подать логический 0, что приведет к открытию VT3 и VT4. Последний зажжет светодиоды оптотиристоров, которые откроются и включат сетевую нагрузку. Оптронные тиристоры обеспечивают гальваническую развязку от сети собственно схемы управления, что повышает электробезопасность и надежность схемы.

Несколько слов о тиристорах. Не вдаваясь в технические подробности и вольтамперные характеристики можно сказать, что - это простой диод, у них даже обозначения похожи. Вот только у тиристора имеется еще управляющий электрод. Если на него подать положительный относительно катода импульс, даже кратковременный, то тиристор откроется.

В открытом состоянии тиристор будет находиться до тех пор, пока через него течет ток в прямом направлении. Этот ток должен быть не менее некоторой величины, называемой током удержания. Иначе тиристор просто не включится. Выключить тиристор можно лишь разорвав цепь или подав напряжение обратной полярности. Поэтому, чтобы пропустить обе полуволны переменного напряжения используется встречно - параллельное включение двух тиристоров (см. рис. 5).

Чтобы не делать такого включения выпускаются или на буржуйском языке триаки. В них уже в одном корпусе изготовлены два тиристора, включенные встречно - параллельно. Управляющий электрод у них общий.

На рисунке 6 показаны внешний вид и цоколевка тиристоров, а на рисунке 7 то же для триаков.

На рисунке 8 показана схема подключения триака к микроконтроллеру (выходу микросхемы) при помощи специального маломощного оптотриака типа MOC3041.

Этот драйвер внутри себя содержит светодиод, подключенный к выводам 1 и 2 (на рисунке показан вид на микросхему сверху) и собственно оптотриак, который, будучи засвечен светодиодом, открывается (выводы 6 и 4) и, через резистор R1, соединяет управляющий электрод с анодом, за счет чего открывается мощный триак.

Резистор R2 предназначен для того, чтобы не произошло открытия триака в отсутствии управляющего сигнала в момент включения питания, а цепочка C1, R3 предназначена для подавления помех в момент переключений. Правда, MOC3041 особых помех не создает, поскольку имеет схему CROSS ZERO (переход напряжения через 0), и включения происходят в тот момент, когда сетевое напряжение только перешло через 0.

Все рассмотренные схемы имеют гальваническую развязку от питающей сети, что обеспечивает надежность работы и при значительной коммутируемой мощности.

Если же мощность незначительна и не требуется гальваническая развязка контроллера от сети, то возможно подключение тиристоров непосредственно к микроконтроллеру. Подобная схема приведена на рисунке 9.

Это схема елочной гирлянды произведенной , конечно, в Китае. Управляющие электроды тиристоров MCR 100-6 через подключены непосредственно к микроконтроллеру (находится на плате под каплей черного компаунда). Мощность управляющих сигналов настолько мала, что потребление тока на все четыре сразу, менее 1 миллиампера. При этом обратное напряжение до 800В и ток до 0,8А. Габаритные же размеры как у транзисторов КТ209.

Конечно, в одной короткой статье невозможно описать сразу все схемы, но, основные принципы их работы, кажется рассказать удалось. Сложностей особых тут нет, схемы все проверены на практике и, как правило, при ремонте или самостоятельном изготовлении огорчений не приносят.

Борис Аладышкин

Устройство, представленное на рис.1, предназначено для плавного регулирования в маломощны нагрузках. С его помощью можно от одного источника питания, имеющего припас по мощности, питать второе дополнительное радиотехническое устройство. Например, источник питания на 15...20 В питает необходимую схему, а вам нужно дополнительно от него питать транзисторный приемник, у которого напряжение питания ниже (3...9 В). Схема выполнена на полевом эпитаксиально-планарном транзисторе с p-n-переходом и n-каналом КП903. При работе устройства использовано свойство вольтамперных характеристик данного транзистора при разных напряжениях между затвором и истоком. Семейство характеристик КП903А...В приведено в . Входное питающее напряжение данного устройства 15...20 В. Резистор R2 типа ППБ-ЗА номиналом 150 Ом. С его помощью можно устанавливать требуемое напряжение в нагрузке. Недостатком регулятора является подъем внутреннего сопротивления устройства при понижении рабочего напряжения. Т160 схема регулятора тока На рис.2 изображена схема индикатора напряжения вышеописанного регулятора, собранного на полевом транзисторе КП103. Устройство предназначено для контроля напряжения в нагрузке. Подключение данного индикатора к устройству регулятора выполняется согласно приведенной схеме. В зависимости от буквенного индекса КП103 устанавливаемого в схему индикатора (рис.2) мы будем фиксировать (по моменту зажигания светодиода HL1 при повышении выходного напряжения) рабочее напряжение в нагрузке. Эффект фиксирования различных напряжений в нагрузке получается в результате того, что канальные транзисторы КП103 имеют различные напряжения отсечки в зависимости от буквенного индекса, например, для транзистора КП103Е - это 0,4-1,5 В, для КП103Ж - 0,5-2,2 В, для КП103И - 0,8-3 В и т.д.. Установив транзист...

Для схемы "Простой регулятор мощности"

В нагрузку данного простого мощности можно включать лампы накаливания, нагревательные устройства различного типа и проч., по мощности соответствующие применяемым тиристорам. Методика настройки регулятора, содержится в подборе переменного регулирующего резистора. Однако, лучше всего подобрать такой потенциометр, последовательно с постоянным резистором, чтобы напряжение на выходе мощности изменялось в максимально возможных широких пределах. А.АНДРИЕНКО, г.Кострома....

Для схемы "Универсальный блок питания низкого напряжения"

На практике очень часто для питания различных устройств требуются от 3 до 12 В. Описанный блок питания позволяет получать следующего ряда: 3; 4,5(5); 9; 12 В при токе нагрузки до 300 мА. Имеется вероятность оперативно изменять полярность выходного напряжения. ...

Для схемы "ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ"

ЭлектропитаниеПРЕОБРАЗОВАТЕЛЬ С.Сыч225876, Брестская обл., Кобринский р-н, п.Ореховский, ул.Ленина, 17 -1. Предлагаю простую и надежную схему преобразователя напряжения для менеджмента варикапами в различных конструкциях, который вырабатывает 20 В при питании от 9 В. Выбран вариант преобразователя с умножителем напряжения, поскольку он считается самым экономичным. Кроме того, он не создает помех радиоприему. На транзисторах VT1 и VT2 собран генератор импульсов, близких к прямоугольным. На диодах- VD1...VD4 и конденсаторах С2...С5 собран умножитель напряжения. Резистор R5 и стабилитроны VD5, VD6 образуют параметрический стабилизатор напряжения. Конденсатор С6 на выходе является ВЧ-фильтром. Ток потребления преобразователя зависит от напряжения питания и количества варикапов, а также от их типа. Устройство желательно заключить в экран для снижения помех от генератора. Правильно собранное устройство работает сразу и некритично к номиналам деталей....

Для схемы "Преобразователь напряжения 5 -> 230V"

ЭлектропитаниеПреобразователь 5 -> 230 V Микросхемы:DD1 - K155ЛA3 DD2 - K1554TM2Транзисторы:VT1 - VT3 - КТ698Г, VT2 - VT4 - КТ827Б, VT5- КТ863АРезисторы: R1 - 910,R2 - 1k,R3 - 1k,R4 -120 0.25 Bт, R5 - 120 0.25 Bт, R6 - 500 0.25 Вт, R7 - R8 - 56 Ом 2Вт, R9 - 1.5 kOm2ВтДиод VD5 - KC620А двапоследовательно Конденсаторы:С1 - 10H5 С2 - 22 мкФ х450ВТрансформатор:Т1 - двеобмотки по 10 вольт соединенных последовательноток 16А;одна обмотка на 220 вольт ток 1А, частота25кГц =Преобразователь напряжения 5 - 230V...

Для схемы "Ремонт зарядного устройства для MPEG4-плеера"

После двух месяцев эксплуатации вышло из строя "безымянное" зарядное устройство к карманному проигрывателю MPEG4/MP3/WMA. Схемы его, конечно, не было, поэтому пришлось составить ее по монтажной плате. Нумерация активных элементов на ней (рис.1) - условная, остальные соответствуют надписям на печатной плате.Узел преобразователя напряжения реализован на маломощном высоковольтном транзисторе VT1 типа MJE13001, узел стабилизации выходного напряжения произведен на транзисторе VT2 и оптроне VU1. Кроме того, транзистор VT2 защищает VT1 от перегрузки. Транзистор VT3 предназначен для индикации окончания зарядки аккумуляторов.При осмотре изделия оказалось, что транзистор VT1 "ушел на обрыв", a VT2 - пробит. Сгорел также резистор R1. На поиск и устранение неисправностей ушло не более 15 минут. Но при грамотном ремонте любою радиоэлектронного изделия обычно недостаточно одного лишь устранения неисправностей, надобно ещё узнать причины их возникновения, чтобы подобное не повторилось. Радомкрофон схеми Как оказалось, во час работы зарядного устройства более того при отключенной нагрузке и открытом корпусе транзистор VT1, выполненный в корпусе ТО-92, разогревался до температуры приблизительно 90°С. Поскольку, поблизости не было более мощных транзисторов, подходящих на замену MJE13001, я решил приклеить к нему небольшой теплоотвод.Фотография зарядного устройства показана на рис.2. Дюралюминиевый радиатор размерами 37x15x1 мм приклеен к корпусу транзистора теллопроводящим клеем "Радиал". Этим же клеем можно приклеить радиатор и к монтажной плате. С теплоотводом температура корпуса транзистора снизилась до 45...50°С. Причина изначально сильного нагрева транзистора VT1. быть может, кроется в "упрощении" при сборке его демпферной цепи. Рисунок и топология печатной платы дают основание полагать, что в...

Для схемы "Регулятор мощности на трёх деталях"

В последнее пора настоящий ренессанс переживают резисторные и транзисторные регуляторы мощности. Они самые неэкономичные. Повысить КПД можно так же, как и включением диода (см.рисунок). При этом достигается более удобный предел регулирования (50-100%). Полупроводниковые приборы можно разместить на одном радиаторе. Ю.И.Бородатый, Ивано-Франковская обл. Литература 1.Данильчук А.А. Регулятор мощности для паяльника / /Радиоаматор-Электрик. -2000. -№9. -С.23. 2.Риштун А Регулятор потужности на шести деталях //Радиоаматор-Электрик. -2000. -№11. -С.15....

Для схемы "Преобразователя постоянного напряжения 12 В в переменное 220 В"

ЭлектропитаниеПреобразователя постоянного 12 В в переменное 220 В Антон Стоилов Предлагается схема преобразователя постоянного напряжения 12 В в переменное 220 В, который при подключении к автомобильному аккумулятору емкостью 44 А-ч может питать 100-ваттную нагрузку в течение 2-3 часов. Он состоит из задающего генератора на симметричном мультивибраторе VT1, VT2, нагруженного на мощные парафазные ключи VT3-VT8, коммутирующие ток в первичной обмотке повышающего трансформатора TV. VD3 и VD4 защищают мощные транзисторы VT7 и VT8 от перенапряжений при работе без нагрузки. Трансформатор выполнен на магнитопроводе Ш36х36, обмотки W1 и W1" имеют по 28 витков ПЭЛ 2,1, a W2 - 600 витков ПЭЛ 0,59, причем сначала мотают W2, а поверх нее двойным проводом (с поставленной задачей достижения симметрии полуобмоток) W1. При налаживании триммером RP1 добиваются минимальных искажений формы выходного напряжения "Радио Телевизия Електроника" N6/98, с. 12,13....

Для схемы "Светодиодный индикатор напряжения"

В практике радиолюбителя нередко возникает ситуация, когда нужно отслеживать показания того или иного параметра. Предлагаю схему индикаторной светодиодной "линейки". В зависимости от входного светится большее или меньшее количество светодиодов, расположенных в линейку (один за другим).Диапазон допустимого напряжения - 4...12В, т.е. при входном напряжении 4 В будет пылать только один (первый) светодиод, а при 12 В - вся линейка.Возможности схемы можно легко расширить. Чтобы отслеживать переменное напряжение, довольно до резистора R1 установить диодный мост из маломощных диодов. Напряжение питания можно варьировать от 5 до 15 В, подобрав соответственно резисторы R2...R8. От питания схемы зависит в основном яркость светодиодов, входные же характеристики схемы при этом практически не изменяются. Чтобы яркость светодиодов была одинаковой, следует подобрать резисторы следующим образом: где Iк max - ток коллектора VT1, мА; R3=2R2; R4=3R2; R5=4R2; R6=5R2; R7=6R2; R8=7R2.Таким образом, при применении транзистора КТ312А (lK max=30 мА) R2=33 Ома. Резистор R1 входит в делитель напряжения и регулирует режим работы транзистора VT1. Диоды VD1 ...VD7 можно сменить на КД103А, КД105, Д220, светодиоды HL1...HL8 - на АЛ102. Резистор R9 лимитирует ток базы транзистора VT1 и препятствует выходу из строя последнего при попадании на вход схемы большого напряжения.А.КАШКАРОВ, г.С.-Петербург....

Для схемы "Универсальный регулятор напряжения и зарядно-пусковое устройство для"

Довольно часто в радиолюбительской практике возникает необходимость регулировки переменного в пределах 0...220 В. Широко используются для этой цели ЛАТРы (автотрансформаторы). Но их век уже прошел и на смену этим громоздким аппаратам пришли современные тиристорные регуляторы, которые имеют один недостаток: напряжение в таких устройствах регулируется путем изменения длительности импульсов переменного напряжения. Из-за этого к ним невозможно подключить высокоиндуктивную нагрузку (например, трансформатор или дроссель, а также любое другое радиоустройство, содержащее в себе перечисленные выше элементы).От этого недостатка свободен регулятор напряжения, приведенный на рисунке. Он сочетает в себе: устройство защиты от токовых перегрузок, тиристорный регулятор напряжения с мостовым регулятором, рослый КПД (92...98%). Кроме того, регулятор раПростой терморегулятор на симисторе ботает совместно с мощным трансформатором и выпрямителем, который может быть использован для зарядки автомобильных аккумуляторов и в качестве пускового устройства при разряженной АБ.Основные параметры регулятора напряжения:Номинальное напряжение питания, В 220 ± 10%; Выходное напряжение переменного тока, В 0...215; КПД, не менее, процент(ов) 92; Максимальная мощность нагрузки, кВт 2.Основные параметры зарядно-пускового устройства: Выходное напряжение постоянного тока, В 0...40; Постоянный ток, потребляемый нагрузкой, А 0...20; Пусковой ток (при длительности пуска 10 c), A 100.Переключате...


(Вариант 1)

В симисторных регуляторах мощности, работающих по принципу пропускания через нагрузку определенного числа полупериодов тока в единицу времени, должно выполняться условие четности их числа. Во многих известных радиолюбительских (и не только) конструкциях оно нарушается. Вниманию читателей предлагается регулятор, свободный от этого недостатка. Его схема изображена на рис. 1.

Здесь имеются узел питания, генератор импульсов регулируемой скважности и формирователь импульсов, управляющих симистором. Узел питания выполнен по классической схеме: токоограничивающие резистор R2 и конденсатор С1, выпрямитель на диодах VD3, VD4, стабилитрон VD5, сглаживающий конденсатор СЗ. Частота импульсов генератора, собранного на элементах DD1.1, DD1.2 и DD1.4, зависит от емкости конденсатора С2 и сопротивления между крайними выводами переменного резистора R1. Этим же резистором регулируют скважность импульсов. Элемент DD1.3 служит формирователем импульсов с частотой сетевого напряжения, поступающего на его вывод 1 через делитель из резисторов R3 и R4, причем каждый импульс начинается, вблизи перехода мгновенного значения сетевого напряжения через ноль. С выхода элемента DD1.3 эти импульсы через ограничительные резисторы R5 и R6 поступают на базы транзисторов VT1, VT2. Усиленные транзисторами импульсы управления через разделительный конденсатор С4 приходят на управляющий электрод симистора VS1. Здесь их полярность соответствует знаку сетевого напряжения, приложенного в этот момент к выв. 2 симистора. Благодаря тому, что элементы DD1.1 и DD1.2, DD1.3 и DD1.4 образуют два триггера, уровень на выходе элемента DD1.4, соединенном с выводом 2 элемента DD1.3, сменяется на противоположный только в отрицательном полупериоде сетевого напряжения. Предположим, триггер на элементах DD1.3, DD1.4 находится в состоянии с низким уровнем на выходе элемента DD1.3 и высоким на выходе элемента DD1.4. Для изменения этого состояния необходимо, чтобы высокий уровень на выходе элемента DD1.2, соединенном с выводом 6 элемента DD1.4, стал низким. А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.1, независимо от момента установки высокого уровня на выводе 8 элемента DD1.2. Формирование управляющего импульса начинается с приходом положительного полупериода сетевого напряжения на вывод 1 элемента DD1.3. В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.2 сменится низким, что установит на выходе элемента высокий уровень напряжения. Теперь высокий уровень на выходе элемента DD1.4 тоже может смениться низким, но только в отрицательный полупериод напряжения, поступающего на вывод 1 элемента DD1.3. Следовательно, рабочий цикл формирователя управляющих импульсов закончится в конце отрицательного полупериода сетевого напряжения, а общее число полупериодов напряжения, приложенного к нагрузке, будет четным. Основная часть деталей устройства смонтирована на плате с односторонней печатью, чертеж которой показан на рис. 2.

Диоды VD1 и VD2 припаяны непосредственно к выводам переменного резистора R1, а резистор R7 - к выводам симистора VS1. Симистор снабжен ребристым теплоотводом заводского изготовления с площадью теплоотводящей поверхности около 400 см2. Использованы постоянные резисторы МЛТ, переменный резистор R1 - СПЗ-4аМ. Его можно заменить другим такого же или большего сопротивления. Номиналы резисторов R3 и R4 должны быть одинаковыми. Конденсаторы С1, С2 - К73-17. Если требуется повышенная надежность, то оксидный конденсатор С4 можно заменить пленочным, например, К73-17 2,2...4,7 мкФ на 63 В, но размеры печатной платы придется увеличить.
Вместо диодов КД521А подойдут и другие маломощные кремниевые, а стабилитрон Д814В заменит любой более современный с напряжением стабилизации 9 В. Замена транзисторов КТ3102В, КТ3107Г - другие маломощные кремниевые соответствующей структуры. Если амплитуда открывающих симистор VS1 импульсов тока окажется недостаточной, сопротивление резисторов R5 и R6 уменьшать нельзя. Лучше подобрать транзисторы с возможно большим коэффициентом передачи тока при напряжении между коллектором и эмиттером 1 В. У VT1 он должен быть 150...250, у VT2 - 250...270. По окончании монтажа можно присоединять к регулятору нагрузку сопротивлением 50...100 Ом и включать его в сеть. Параллельно нагрузке подключите вольтметр постоянного тока на 300...600 В. Если симистор устойчиво открывается в обоих полупериодах сетевого напряжения, стрелка вольтметра вообще не отклоняется от нуля либо немного колеблется вокруг него. Если же стрелка вольтметра отклоняется лишь в одну сторону, значит, симистор открывается только в полупериодах одного знака. Направление отклонения стрелки соответствует той полярности приложенного к симистору напряжения, при которой он остается закрытым. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока.

Симисторный регулятор мощности.
(Вариант 2)

Предлагаемый симисторный регулятор мощности (см. рис.) можно использовать для регулирования активной мощности нагревательных приборов (паяльника, электрической печки, плиты и пр.). Для изменения яркости осветительных приборов его использовать не рекомендуется, т.к. они будут сильно мигать. Особенностью регулятора является коммутация симистора в моменты перехода сетевого напряжения через ноль, поэтому он не создает сетевых помех Мощность регулируется изменением числа полупериодов сетевого напряжения, поступающих в нагрузку.

Синхрогенератор выполнен на базе логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ DD1.1. Его особенностью является появление высокого уровня (логической "1") на выходе в том случае, когда входные сигналы отличаются друг от друга, и низкого уровня ("О") при совладении входных сигналов. В результате этого "Г появляется на выходе DD1.1 только в моменты перехода сетевого напряжения через ноль. Генератор прямоугольных импульсов с регулируемой скважностью выполнен на логических элементах DD1.2 и DD1.3. Соединение одного из входов этих элементов с питанием превращает их в инверторы. В результате получается генератор прямоугольных импульсов. Частота импульсов приблизительно 2 Гц, а их длительность изменяется резистором R5.

На резисторе R6 и диодах VD5. VD6 выполнена схема совпадения 2И. Высокий уровень на ее выходе появляется только при совпадении двух "1" (импульса синхронизации и импульса с генератора). В результате на выходе 11 DD1.4 появляются пачки импульсов синхронизации. Элемент DD1.4 является повторителем импульсов, для чего один из его входов подключен к общей шине.
На транзисторе VT1 выполнен формирователь управляющих импульсов. Пачки коротких импульсов с его эмиттера, синхронизированные с началом полупериодов сетевого напряжения, поступают на управляющий переход симистора VS1 и открывают его. Через RH протекает ток.

Питание симисторного регулятора мощности осуществляется через цепочку R1-C1-VD2. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Положительные импульсы со стабилитрона VD1 через диод VD2 заряжают конденсатор СЗ.
При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тогда симистор типа КУ208Г позволяет коммутировать мощность до 1 кВт. Размеры радиатора можно приближенно прикинуть из расчета, что на 1 Вт рассеиваемой мощности необходимо около 10 см2 эффективной поверхности радиатора (сам корпус симистора рассеивает 10 Вт мощности). Для большей мощности необходим более мощный симистор, например, ТС2-25-6. Он позволяет коммутировать ток 25 А. Симистор выбирается с допустимым обратным напряжением не ниже 600 В. Симистор желательно защитить варистором, включенным параллельно, например, СН-1-1-560. Диоды VD2.. .VD6 можно применять в схеме любые, например. КД522Б или КД510А Стабилитрон - любой маломощный на напряжение 14.. .15 В. Подойдет Д814Д.

Симисторный регулятор мощности размещен на печатной плате из одностороннего стеклотекстолита размерами 68x38 мм.

Простой регулятор мощности.

Регулятор мощности до 1 кВт (0%-100%).
Схема собиралась не раз, работает без наладки и других проблем. Естественно диоды и тиристор на радиатор при мощности более 300 ватт. Если меньше, то хватает самих корпусов деталей для охлаждения.
Изначально в схеме применялись транзисторы типа МП38 и МП41.

Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора. Схема достаточно проста и доступна даже начинающему радиолюбителю. Для управления более мощной нагрузкой тиристоры необходимо поставить на радиатор (150 см2 и более). Для устранения помех, создаваемых регулятором, желательно на входе поставить дроссель.

На схеме - родителе, был установлен симистор КУ208Г, и меня он не устроил из за малой мощности коммутации. Покопавшись нашел импортные симисторы BTA16-600. Максимальное напряжение коммутации которого равен 600 вольт пр токе 16А!!!
Все резисторы МЛТ 0,125;
R4 - СП3-4аМ;
Конденсатор составлен из двух (включенных параллельно) по 1 микрофараду 250 вольт, типа - К73-17.
При данных, указанных на схеме, были достигнуты следующие результаты: Регулировка напряжения от 40 до напряжения сети.

Регулятор можно вставить в штатный корпус обогревателя.

Схема срисованная с платы регулятора пылесоса.

на кондесаторе маркировка: 1j100
Пробовал управлять ТЭНом 2 квт - никаких морганий света на той же фазе не заметил,
напряжение на ТЭНе регулируется плавно и, вроде бы, равномернно (пропорционально углу поворота резистора).
Регулируется от 0 до 218 вольт при напряжении в сети 224-228 вольт.

При разработке регулируемого источника питания без высокочастотного преобразователя разработчик сталкивается с такой проблемой, что при минимальном выходном напряжении и большом токе нагрузки на регулирующем элементе стабилизатор рассеивается большая мощность. До настоящего времени в большинстве случаев эту проблему решали так: делали несколько отводов у вторичной обмотки силового трансформатора и разбивали весь диапазон регулировки выходного напряжения на несколько поддиапазонов. Такой принцип использован во многих серийных источниках питания, например, УИП-2 и более современных. Понятно, что использование источника питания с несколькими поддиапазонами усложняется, усложняется также дистанционное управление таким источником питания, например, от ЭВМ.

Выходом мне показалось использование управляемого выпрямителя на тиристоре т. к. появляется возможность создания источника питания, управляемого одной ручкой установки выходного напряжения или одним управляющим сигналом с диапазоном регулировки выходного напряжения от нуля (или почти от нуля) до максимального значения. Такой источник питания можно будет изготовить из готовых деталей, имеющихся в продаже.

К настоящему моменту управляемые выпрямители с тиристорами описаны и весьма подробно в книгах по источникам питания, но практически в лабораторных источниках питания применяются редко. В любительских конструкциях они также редко встречаются (кроме, конечно, зарядных устройств для автомобильных аккумуляторов). Надеюсь, что настоящая работа поможет изменить это положение дел.

В принципе, описанные здесь схемы могут быть применены для стабилизации входного напряжения высокочастотного преобразователя, например, как это сделано в телевизорах “Электроника Ц432”. Приведенные здесь схемы могут также быть использованы для изготовления лабораторных источников питания или зарядных устройств.

Описание своих работ я привожу не в том порядке как я их проводил, а более или менее упорядочено. Сначала рассмотрим общие вопросы, затем “низковольтные” конструкции типа источников питания для транзисторных схем или зарядки аккумуляторов и затем “высоковольтные” выпрямители для питания схем на электронных лампах.

Работа тиристорного выпрямителя на емкостную нагрузку

В литературе описано большое количество тиристорных регуляторов мощности, работающих на переменном или пульсирующем токе с активной (например, лампы накаливания) или индуктивной (например, электродвигатель) нагрузкой. Нагрузкой же выпрямителя обычно является фильтр в котором для сглаживания пульсаций применяются конденсаторы, поэтому нагрузка выпрямителя может иметь емкостный характер.

Рассмотрим работу выпрямителя с тиристорным регулятором на резистивно-емкостную нагрузку. Схема подобного регулятора приведена на рис. 1.

Рис. 1.

Здесь для примера показан двухполупериодный выпрямитель со средней точкой, однако он может быть выполнен и по другой схеме, например, мостовой. Иногда тиристоры кроме регулирования напряжения на нагрузке U н выполняют также функцию выпрямительных элементов (вентилей), однако такой режим допускается не для всех тиристоров (тиристоры КУ202 с некоторыми литерами допускают работу в качестве вентилей). Для ясности изложения предположим, что тиристоры используются только для регулирования напряжения на нагрузке U н , а выпрямление производится другими приборами.

Принцип работы тиристорного регулятора напряжения поясняет рис. 2. На выходе выпрямителя (точка соединения катодов диодов на рис. 1) получаются импульсы напряжения (нижняя полуволна синусоиды “вывернута” вверх), обозначенные U выпр . Частота пульсаций f п на выходе двухполупериодного выпрямителя равна удвоенной частоте сети, т. е. 100 Hz при питании от сети 50 Hz . Схемауправления подает на управляющий электрод тиристора импульсы тока (или света если применен оптотиристор) с определенной задержкой t з относительно начала периода пульсаций, т. е. того момента, когда напряжение выпрямителя U выпр становится равным нулю.

Рис. 2.

Рисунок 2 выполнен для случая, когда задержка t з превышает половину периода пульсаций. В этом случае схема работает на падающем участке волны синусоиды. Чем больше задержка момента включения тиристора, тем меньше получится выпрямленное напряжение U н на нагрузке. Пульсации напряжения на нагрузке U н сглаживаются конденсатором фильтра C ф . Здесь и далее сделаны некоторые упрощения при рассмотрении работы схем: выходное сопротивление силового трансформатора считается равным нулю, падение напряжения на диодах выпрямителя не учитывается, не учитывается время включения тиристора. При этом получается что подзаряд емкости фильтра C ф происходит как бы мгновенно. В реальности после подачи запускающего импульса на управляющий электрод тиристора заряд конденсатора фильтра занимает некоторое время, которое, однако, обычно намного меньше периода пульсаций Т п.

Теперь представим, что задержка момента включения тиристора t з равна половине периода пульсаций (см. рис. 3). Тогда тиристор будет включаться, когда напряжение на выходе выпрямителя проходит через максимум.


Рис. 3.

В этом случае напряжение на нагрузке U н также будет наибольшим, примерно таким же, как если бы тиристорного регулятора в схеме не было (пренебрегаем падением напряжения на открытом тиристоре).

Здесь мы и сталкиваемся с проблемой. Предположим, что мы хотим регулировать напряжение на нагрузке почти от нуля до наибольшего значения, которое можно получить от имеющегося силового трансформатора. Для этого с учетом сделанных ранее допущения потребуется подавать на тиристор запускающие импульсы ТОЧНО в момент, когда U выпр проходит через максимум, т. е. t з = T п /2. С учетом того, что тиристор открывается не моментально, а подзарядка конденсатора фильтра C ф также требует некоторого времени, запускающий импульс нужно подать несколько РАНЬШЕ половины периода пульсаций, т. е. t з < T п /2. Проблема в том, что во-первых сложно сказать насколько раньше, т. к. это зависит от таких причин, которые при расчете точно учесть сложно, например, времени включения данного экземпляра тиристора или полного (с учетом индуктивностей) выходного сопротивления силового трансформатора. Во-вторых, даже если произвести расчет и регулировку схемы абсолютно точно, время задержки включения t з , частота сети, а значит, частота и период T п пульсаций, время включения тиристора и другие параметры со временем могут измениться. Поэтому для того чтобы получить наибольшее напряжение на нагрузке U н возникает желание включать тиристор намного раньше половины периода пульсаций.

Предположим, что так мы и поступили, т. е. установили время задержки t з намного меньшее Т п /2. Графики, характеризующие работу схемы в этом случае приведены на рис. 4. Заметим, что если тиристор откроется раньше половины полупериода, он будет оставаться в открытом состоянии пока не закончится процесс заряда конденсатора фильтра C ф (см. первый импульс на рис. 4).


Рис. 4.

Оказывается, что при малом времени задержки t з возможно возникновение колебаний выходного напряжения регулятора. Они возникают в том случае, если в момент подачи на тиристор запускающего импульса напряжение на нагрузке U н оказывается больше напряжения на выходе выпрямителя U выпр . В этом случае тиристор оказывается под обратным напряжением и не может открыться под действием запускающего импульса. Один или несколько запускающих импульсов могут быть пропущены (см. второй импульс на рис. 4). Следующее включение тиристора произойдет когда конденсатор фильтра разрядится и в момент подачи управляющего импульса тиристор будет находиться под прямым напряжением.

Вероятно, наиболее опасным является случай, когда оказывается пропущен каждый второй импульс. В этом случае через обмотку силового трансформатора будет проходить постоянный ток, под действием которого трансформатор может выйти из строя.

Для того чтобы избежать появления колебательного процесса в схеме тиристорного регулятора вероятно можно отказаться от импульсного управления тиристором, но в этом случае схема управления усложняется или становится неэкономичной. Поэтому автор разработал схему тиристорного регулятора в которой тиристор нормально запускается управляющими импульсами и колебательного процесса не возникает. Такая схема приведена на рис. 5.


Рис. 5.

Здесь тиристор нагружен на пусковое сопротивление R п , а конденсатор фильтра C R н подключены через пусковой диод VD п . В такой схеме запуск тиристора происходит независимо от напряжения на конденсаторе фильтра C ф .После подачи запускающего импульса на тиристор его анодный ток сначала начинает проходить через пусковое сопротивление R п и, затем, когда напряжение на R п превысит напряжение на нагрузке U н , открывается пусковой диод VD п и анодный ток тиристора подзаряжает конденсатор фильтра C ф . Сопротивление R п выбирается такой величины чтобы обеспечить устойчивый запуск тиристора при минимальном времени задержки запускающего импульса t з . Понятно, что на пусковом сопротивлении бесполезно теряется некоторая мощность. Поэтому в приведенной схеме предпочтительно использовать тиристоры с малым током удержания, тогда можно будет применить пусковое сопротивление большой величины и уменьшить потери мощности.

Схема на рис. 5 имеет тот недостаток, что ток нагрузки проходит через дополнительный диод VD п , на котором бесполезно теряется часть выпрямленного напряжения. Этот недостаток можно устранить, если подключить пусковое сопротивление R п к отдельному выпрямителю. Схема с отдельным выпрямителем управления, от которого питается схема запуска и пусковое сопротивление R п приведена на рис. 6. В этой схеме диоды выпрямителя управления могут быть маломощными т. к. ток нагрузки протекает только через силовой выпрямитель.


Рис. 6.

Низковольтные источники питания с тиристорным регулятором

Ниже приводится описание нескольких конструкций низковольтных выпрямителей с тиристорным регулятором. При их изготовлении я взял за основу схему тиристорного регулятора, применяемого в устройствах для заряда автомобильных аккумуляторов (см. рис. 7). Эта схема успешно применялась моим покойным товарищем А. Г. Спиридоновым.


Рис. 7.

Элементы, обведенные на схеме (рис. 7), устанавливались на небольшой печатной плате. В литературе описано несколько подобных схем, отличия между ними минимальны, в основном, типами и номиналами деталей. В основном отличия такие:

1. Применяют времязадающие конденсаторы разной емкости, т. е. вместо 0.5 m F ставят 1 m F , и, соответственно, переменное сопротивление другой величины. Для надежности запуска тиристора в своих схемах я применял конденсатор на 1 m F .

2. Параллельно времязадающему конденсатору можно не ставить сопротивление (3 k W на рис. 7). Понятно, что при этом может потребоваться переменное сопротивление не на 15 k W , а другой величины. Влияние сопротивления, параллельного времязадающему конденсатору на устойчивость работы схемы я пока не выяснил.

3. В большинстве описанных в литературе схем применяются транзисторы типов КТ315 и КТ361. Порою они выходят из строя, поэтому в своих схемах я применял более мощные транзисторы типов КТ816 и КТ817.

4. К точке соединения базы pnp и коллектора npn транзисторов может быть подключен делитель из сопротивлений другой величины (10 k W и 12 k W на рис. 7).

5. В цепи управляющего электрода тиристора можно установить диод (см. на схемах, приведенных ниже). Этот диод устраняет влияние тиристора на схему управления.

Схема (рис. 7) приведена для примера, несколько подобных схем с описаниями можно найти в книге “Зарядные и пуско-зарядные устройства: Информационный обзор для автолюбителей / Сост. А. Г. Ходасевич, Т. И. Ходасевич -М.:НТ Пресс, 2005”. Книга состоит из трех частей, в ней собраны чуть ли не все зарядные устройства за историю человечества.

Простейшая схема выпрямителя с тиристорным регулятором напряжения приведена на рис. 8.


Рис. 8.

В этой схеме использован двухполупериодный выпрямитель со средней точкой т. к. в ней содержится меньше диодов, поэтому нужно меньше радиаторов и выше КПД. Силовой трансформатор имеет две вторичные обмотки на переменное напряжение 15 V . Схема управления тиристором здесь состоит из конденсатора С1, сопротивлений R 1- R 6, транзисторов VT 1 и VT 2, диода VD 3.

Рассмотрим работу схемы. Конденсатор С1 заряжается через переменное сопротивление R 2 и постоянное R 1. Когда напряжение на конденсаторе C 1 превысит напряжение в точке соединения сопротивлений R 4 и R 5, открывается транзистор VT 1. Коллекторный ток транзистора VT 1 открывает VT 2. В свою очередь, коллекторный ток VT 2 открывает VT 1. Таким образом, транзисторы лавинообразно открываются и происходит разряд конденсатора C 1 в управляющий электрод тиристора VS 1. Так получается запускающий импульс. Изменяя переменным сопротивлением R 2 время задержки запускающего импульса, можно регулировать выходное напряжение схемы. Чем больше это сопротивление, тем медленнее происходит заряд конденсатора C 1, больше время задержки запускающего импульса и ниже выходное напряжение на нагрузке.

Постоянное сопротивление R 1, включенное последовательно с переменным R 2 ограничивает минимальное время задержки импульса. Если его сильно уменьшить, то при минимальном положении переменного сопротивления R 2 выходное напряжение будет скачком исчезать. Поэтому R 1 подобрано таким образом чтобы схема устойчиво работала при R 2 в положении минимального сопротивления (соответствует наибольшему выходному напряжению).

В схеме использовано сопротивление R 5 мощностью 1 W только потому, что оно попалось под руку. Вероятно вполне достаточно будет установить R 5 мощностью 0.5 W .

Сопротивление R 3 установлено для устранения влияния наводок на работу схемы управления. Без него схема работает, но чувствительна, например, к прикосновению к выводам транзисторов.

Диод VD 3 устраняет влияние тиристора на схему управления. На опыте я проверил и убедился что с диодом схема работает устойчивее. Короче, не нужно скупиться, проще поставить Д226, коих запасы неисчерпаемы исделать надежно работающее устройство.

Сопротивление R 6 в цепи управляющего электрода тиристора VS 1 повышает надежность его работы. Иногда это сопротивление ставят большей величины или не ставят вовсе. Схема без него обычно работает, но тиристор может самопроизвольно открываться под действием помех и утечек в цепи управляющего электрода. Я установил R 6 величиной 51 W как рекомендовано в справочных данных тиристоров КУ202.

Сопротивление R 7 и диод VD 4 обеспечивают надежный запуск тиристора при малом времени задержки запускающего импульса (см. рис. 5 и пояснения к нему).

Конденсатор C 2 сглаживает пульсации напряжения на выходе схемы.

В качестве нагрузки при опытах регулятором использовалась лампа от автомобильной фары.

Схема с отдельным выпрямителем для питания цепей управления и запуска тиристора приведена на рис. 9.


Рис. 9.

Достоинством данной схемы является меньшее число силовых диодов, требующих установки на радиаторы. Заметим, что диоды Д242 силового выпрямителя соединены катодами и могут быть установлены на общий радиатор. Анод тиристора соединенный с его корпусом подключен к “минусу” нагрузки.

Монтажная схема этого варианта управляемого выпрямителя приведена на рис. 10.


Рис. 10.

Для сглаживания пульсаций выходного напряжения может быть применен LC -фильтр. Схема управляемого выпрямителя с таким фильтром приведена на рис. 11.


Рис. 11.

Я применил именно LC -фильтр по следующим соображениям:

1. Он более устойчив к перегрузкам. Я разрабатывал схему для лабораторного источника питания, поэтому перегрузки его вполне возможны. Замечу, что даже если сделать какую-либо схему защиты, то у нее будет некоторое время срабатывания. За это время источник питания не должен выходить из строя.

2. Если сделать транзисторный фильтр, то на транзисторе обязательно будет падать некоторое напряжение, поэтому КПД будет низкий, а транзистору может потребоваться радиатор.

В фильтре использован серийный дроссель Д255В.

Рассмотрим возможные модификации схемы управления тиристором. Первая из них показана на рис. 12.


Рис. 12.

Обычно времязадающую цепь тиристорного регулятора делают из включенных последовательно времязадающего конденсатора и переменного сопротивления. Иногда удобно построить схему так, чтобы один из выводов переменного сопротивления был подключен к “минусу” выпрямителя. Тогда можно включить переменное сопротивление параллельно конденсатору, как сделано на рисунке 12. Когда движок находится в нижнем по схеме положении, основная часть тока, проходящего через сопротивление 1.1 k W поступает во времязадающий конденсатор 1 m F и быстро заряжает его. При этом тиристор запускается на “макушках” пульсаций выпрямленного напряжения или немного раньше и выходное напряжение регулятора получается наибольшим. Если движок находится в верхнем по схеме положении, то времязадающий конденсатор закорочен и напряжение на нем никогда не откроет транзисторы. При этом выходное напряжение будет равно нулю. Меняя положение движка переменного сопротивления, можно изменять силу тока, заряжающего времязадающий конденсатор и, таким образом, время задержки запускающих импульсов.

Иногда требуется производить управление тиристорным регулятором не при помощи переменного сопротивления, а от какой-нибудь другой схемы (дистанционное управление, управление от вычислительной машины). Бывает, что детали тиристорного регулятора находятся под большим напряжением и непосредственное присоединение к ним опасно. В этих случаях вместо переменного сопротивления можно использовать оптрон.


Рис. 13.

Пример включения оптрона в схему тиристорного регулятора показан на рис. 13. Здесь используется транзисторный оптрон типа 4 N 35. База его фототранзистора (вывод 6) соединена через сопротивление с эмиттером (вывод 4). Это сопротивление определяет коэффициент передачи оптрона, его быстродействие и устойчивость к изменениям температуры. Автор испытал регулятор с указанным на схеме сопротивлением 100 k W , при этом зависимость выходного напряжения от температуры оказалась ОТРИЦАТЕЛЬНОЙ, т. е. при очень сильном нагреве оптрона (оплавилась полихлорвиниловая изоляция проводов) выходное напряжение уменьшалось. Вероятно, это связано с уменьшением отдачи светодиода при нагреве. Автор благодарит С. Балашова за советы по использованию транзисторных оптронов.


Рис. 14.

При регулировке схемы управления тиристором иногда бывает полезна подстройка порога срабатывания транзисторов. Пример такой подстройки показан на рис. 14.

Рассмотрим также пример схемы с тиристорным регулятором на большее напряжение (см. рис. 15). Схема питается от вторичной обмотки силового трансформатора ТСА-270-1, дающей переменное напряжение 32 V . Номиналы деталей, указанные на схеме, подобраны под это напряжение.


Рис. 15.

Схема на рис. 15 позволяет плавно регулировать выходное напряжение от 5 V до 40 V , что достаточно для большинства устройств на полупроводниковых приборах, таким образом, эту схему можно взять за основу при изготовлении лабораторного источника питания.

Недостатком этой схемы является необходимость рассеивать достаточно большую мощность на пусковом сопротивлении R 7. Понятно, что чем меньше ток удержания тиристора, тем больше может быть величина и меньше мощность пускового сопротивления R 7. Поэтому здесь предпочтительно использовать тиристоры с малым током удержания.

Кроме обычных тиристоров в схеме тиристорного регулятора может быть использован оптотиристор. На рис. 16. приведена схема с оптотиристором ТО125-10.


Рис. 16.

Здесь оптотиристор просто включен вместо обычного, но т.к. его фототиристор и светодиод изолированы друг от друга, схемы его применения в тиристорных регуляторах могут быть и другими. Заметим, что благодаря малому току удержания тиристоров ТО125 пусковое сопротивление R 7 требуется менее мощное, чем в схеме на рис. 15. Поскольку автор опасался повредить светодиод оптотиристора большими импульсными токами, в схему было включено сопротивление R6. Как оказалось, схема работает и без этого сопротивления, причем без него схема лучше работает при низких напряжениях на выходе.

Высоковольтные источники питания с тиристорным регулятором

При разработке высоковольтных источников питания с тиристорным регулятором за основу была взята схема управления оптотиристором, разработанная В. П. Буренковым (ПРЗ) для сварочных аппаратов.Для этой схемы разработаны и выпускаются печатные платы. Автор выражает благодарность В. П. Буренкову за образец такой платы. Схема одного из макетов регулируемого выпрямителя с использованием платы конструкции Буренкова приведена на рис. 17.


Рис. 17.

Детали, установленные на печатной плате обведены на схеме пунктиром. Как видно из рис. 16, на плате установлены гасящие сопротивления R 1 и R 2, выпрямительный мост VD 1 и стабилитроны VD 2 и VD 3. Эти детали предназначены для питания от сети 220 V . Чтобы испытать схему тиристорного регулятора без переделок в печатной плате, использован силовой трансформатор ТБС3-0,25У3, вторичная обмотка которого подключена таким образом, что с нее снимается переменное напряжение 200 V , т. е. близкое к нормальному питающему напряжению платы. Схема управления работает аналогично описанным выше, т. е. конденсатор С1 заряжается через подстроечное сопротивление R 5 и переменное сопротивление (установлено вне платы) до того момента, пока напряжение на нем не превысит напряжение на базе транзистора VT 2, после чего транзисторы VT 1 и VT2 открываются и происходит разряд конденсатора С1 через открывшиеся транзисторы и светодиод оптронного тиристора.

Достоинством данной схемы является возможность подстройки напряжения, при котором открываются транзисторы (при помощи R 4), а также минимального сопротивления во времязадающей цепи (при помощи R 5). Как показывает практика, иметь возможность такой подстройки весьма полезно, особенно если схема собирается в любительских условиях из случайных деталей. При помощи подстроечных сопротивлений R4 и R5 можно добиться регулировки напряжения в широких пределах и устойчивой работы регулятора.

С этой схемы я начинал свои ОКР по разработке тиристорного регулятора. В ней же и был обнаружен пропуск запускающих импульсов при работе тиристора на емкостную нагрузку (см. рис. 4). Желание повысить стабильность работы регулятора привело к появлению схемы рис. 18. В ней автор опробовал работу тиристора с пусковым сопротивлением (см. рис 5.


Рис. 18.

В схеме рис. 18. использована та же плата, что и в схеме рис. 17, только с нее удален диодный мост, т.к. здесь используется один общий для нагрузки и схемы управления выпрямитель. Заметим, что в схеме на рис. 17 пусковое сопротивление подобрано из нескольких параллельно включенных чтобы определить максимально возможное значение этого сопротивления, при котором схема начинает устойчиво работать. Между катодом оптотиристора и конденсатором фильтра включено проволочное сопротивление 10 W . Оно нужно для ограничения бросков тока через опторитистор. Пока это сопротивление не было установлено, после поворота ручки переменного сопротивления оптотиристор пропускал в нагрузку одну или несколько целых полуволн выпрямленного напряжения.

На основании проведенных опытов была разработана схема выпрямителя с тиристорным регулятором, пригодная для практического использования. Она приведена на рис. 19.


Рис. 19.


Рис. 20.

Печатная плата SCR 1 M 0 (рис. 20) разработана для установки на нее современных малогабаритных электролитических конденсаторов и проволочных сопротивлений в керамическом корпусе типа SQP . Автор выражает благодарность Р. Пеплову за помощь с изготовлением и испытанием этой печатной платы.

Поскольку автор разрабатывал выпрямитель с наибольшим выходным напряжением 500 V , потребовалось иметь некоторый запас по выходному напряжению на случай снижения напряжения сети. Увеличить выходное напряжение оказалось возможным если пересоединить обмотки силового трансформатора, как показано на рис. 21.

Рис. 21.

Замечу также, что схема рис. 19 и плата рис. 20 разработаны с учетом возможности их дальнейшего развития. Для этого на плате SCR 1 M 0 имеются дополнительные выводы от общего провода GND 1 и GND 2, от выпрямителя DC 1

Разработка и налаживание выпрямителя с тиристорным регулятором SCR 1 M 0 проводились совместно со студентом Р. Пеловым в ПГУ. C его помощью были сделаны фотографии модуля SCR 1 M 0 и осциллограмм.


Рис. 22. Вид модуля SCR 1 M 0 со стороны деталей


Рис. 23. Вид модуля SCR 1 M 0 со стороны пайки


Рис. 24. Вид модуля SCR 1 M 0 сбоку

Таблица 1. Осциллограммы при малом напряжении

№ п/п

Минимальное положение регулятора напряжения

По схеме

Примечания

На катоде VD5

5 В/дел

2 мс/дел

На конденсаторе C1

2 В/дел

2 мс/дел

т.соединения R2 и R3

2 В/дел

2 мс/дел

На аноде тиристора

100 В/дел

2 мс/дел

На катоде тиристора

50 В/дел

2 мс/де


Таблица 2. Осциллограммы при среднем напряжении

№ п/п

Среднее положение регулятора напряжения

По схеме

Примечания

На катоде VD5

5 В/дел

2 мс/дел

На конденсаторе C1

2 В/дел

2 мс/дел

т.соединения R2 и R3

2 В/дел

2 мс/дел

На аноде тиристора

100 В/дел

2 мс/дел

На катоде тиристора

100 В/дел

2 мс/дел

Таблица 3. Осциллограммы при максимальном напряжении

№ п/п

Максимальное положение регулятора напряжения

По схеме

Примечания

На катоде VD5

5 В/дел

2 мс/дел

На конденсаторе C1

1 В/дел

2 мс/дел

т.соединения R2 и R3

2 В/дел

2 мс/дел

На аноде тиристора

100 В/дел

2 мс/дел

На катоде тиристора

100 В/дел

2 мс/дел

Чтобы избавиться от этого недостатка схема регулятора была изменена. Было установлено два тиристора – каждый на свой полупериод. С этими изменениями схема испытывалась несколько часов и “выбросов” замечено не было.

Рис. 25. Схема SCR 1 M 0 с доработками